<u>The Current T2K</u> <u>Beam Window</u> <u>Design and</u> <u>Upgrade Potential</u>

Oxford-Princeton Targetry Workshop Princeton, Nov 2008 Matt Rooney

T2K Target Station

Beam window design overview

Science & Technology Facilities Council

Exploded assembly view

Ti-6Al-4V Beam window

- Some difficulties with post-machining and post-weld distortion – a common problem with Ti-6AI-4V.

- E-beam welding conducted by Culham UKAEA Special Techniques Group.

Helium cooling

Helium flow grooves

Inflatable seals

PSI

Picture courtesy of PSI

KEK Muon Group

Picture courtesy of Y. Miyake and S. Makimura (KEK)

Science & Technology Facilities Council

Pillow seals

KEK Muon Group pillow seal

Window - side view

Pictures courtesy of Y. Miyake (KEK)

Seal and mating flange

Seal foils (surface roughness, Ra = $0.004 \ \mu m$, Rt = $0.030 \ \mu m$)

Seals manufactured by UHV Design in UK. Developed from similar design at KEK (via Oak Ridge via PSI).

Polished flange (surface roughness, Ra = $0.020 \ \mu m$)

Assembled Window

Remote Handling

Remote handling

Target **Station** (Japan)

Remote installation

Stress analysis and upgrade potential

Beam properties

- 0.75 MW beam power
- 3.3 x 10¹⁴ protons per pulse
- Gaussian profile with 4 mm rad rms beam spot
- 5 μs pulse = 8 x 58ns bunches
- 1 pulse every 2 seconds at 30 GeV

Energy deposited in window with distance from beam centre

ANSYS Static Stress Results

UTS Ti-6Al-4V ≈ 1GPa

NOTE: 100W/m²K heat transfer coefficient applied to internal wall

Ti-6Al-4V – the good news

Fatigue strength

Ti-6Al-4V – the bad news

- reduction in strength at elevated temperatures

T2K beam window upgrade potential

Increased number of protons per pulse would push the limits of Ti-6Al-4V.

0.75 MW pulse ~ 100 MPa shock stress 3.0 MW pulse ~ 500 MPa shock stress Room temp yield strength Ti-6AI-4V = 900 MPa. But higher power could also be achieved through a higher beam frequency.

Stress Analysis Overview

- Long term survival of window looks likely for 0.75 MW beam.

- Beam upgrades with increased PPP would test the limits of the material.

- Potential for power upgrades more promising if number of pulses is increased.

- Radiation damage then becomes the dominant factor in determining live in service.

