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What are eigen-emittances?

Eigen-emittances are the generalization of canonical rms emittances to systems in
which there are correlations between the phase planes of the beam distribution
— in other words, generalization to systems in which the beam matrix (6x6 canonical 2" moment
matrix) contains nonzero terms outside the 2x2 diagonal blocks
So, if you think that rms emittances are important quantities, then, in systems
with correlations, the eigen-emittances are important quantities

Notes:
— when correlations are removed, eigen-emittances are the same as canonical rms emittances

— beams born in longitudinal magnetic fields generally have coupling between the (x-px) and (y-py)
phase planes.



Why are eigen-emittances important to accelerator
and collider design?

Beams are born with certain eigen-emittances
* inthe photo-injector of a light source or e+/e- collider
* in the decay channel of the Front End of a muon collider
The eigen-emittances don't change during transport in linear Hamiltonian systems

* inthese systems, whatever the beam is born with, that's what you are stuck
with (you can, however, interchange the eigen-emittances)

The eigen-emittances can change during transport in
* nonlinear Hamiltonian systems

* non-Hamiltonian systems

Achieving high luminosity in muon colliders requires reducing the (initially large)
eigen-emittances to small values via muon cooling



How to compute eigen-emittances in a beam
dynamics code that uses canonical variables
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Compute the eigenvalues of JZ
The eigen-emittances are the modulii of the eigenvalues of JX

If the code does not use canonical variables, then first you need to convert the data
to canonical form, the follow the above procedure

In summary, computing eigen-emittances is easy (assuming you can compute
eigenvalues of a 6x6 matrix)

* computing the transforming matrix that transforms X to Williamson normal
form is more complicated.



Thoughts on MAP Front End design

Muon beams are born in a decay channel containing a strong longitudinal B field

The B field splits the "transverse" eigen-emittances, making one large and one
small (with their product the same as the B=0 case)

1 _\2 _ 277
X ion = 5{85 +& +0,054(gB) = \/—46565 + [gf + &, +0,,05(gB) ] }

g=q/p,

So, while large B helps to contain the muons, it also makes the job of cooling
harder because it increases one of the eigen-emittances that the beam is born with

* Does it matter in our parameter regime?
* Example: B=2T, p..=240 MeV/c, unnormalized ¢,, e,=.036,
s11=s33=(7.5cm)*2 > eigen-emittances are .044, .029

split is not significant in our case

Summary: unless there is a significant change in our parameters, the decay channel
B field does not significantly impact the eigen-emittances that the beam is born
with



Thoughts on MAP Front End design, cont.

Though the distinction between rms emittances and eigen-emittances is not

significant in the decay channel, it might be elsewhere. We should compute it and
use it when comparing different cooling concepts.

Example code to compute eigen-emittances is contained in extra material at end of
this presentation.



Additional material:
Details on eigen-emittances



What are eigen-emittances™#?

* Letzdenote a 6-vector of canonical coordinates and moments, z=(x,p,,y,p,,t,p,)
 Consider the matrix of 2" moments, Z_, =<z,,z,>
 For example, in a 1D system (2D phase space),
<x’> < xp, >
<xp.,> < pf >
* Easy to verify that Z is diagonalized via a symplectic congruency transformation,

AZAT = grms12x2 = UX/E 0

al~lf AP
*Material presented here is from Chapter 8, section 8.37, of the MaryLie manual
and will eventually be found in Ch 26 of Alex Dragt’s textbook, downloadable from a=—-<xp, > /Erms
http://www.physics.umd.edu/dsat/

where A
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#The earliest reference to “eigen-emittance” that | have found is A. J. Dragt et al., “Lie Algebraic Treatment ﬁ =< > /8”715

of Linear and Nonlinear Beam Dynamics,” Ann. Rev. Nucl. Part. Sci., Vol. 38, pp 455-496 (1988). The —< 2 > /
definition in terms of symplectic congruency transformations is found in the MaryLie manual. Y =<Dx Ems
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See also: A. Dragt, R. Gluckstern, F. Neri, and G. Rangarajan, "Theory of Emittance Invariants", in Eps =< X ><p >—<Xp >

Lecture Notes in Physics 343: Frontiers of Particle Beams; Observation, Diagnosis, and Correction, M.
Month and S. Turner, Eds., Springer Verlag (1989); A. Dragt, F. Neri, and G. Rangarajan, "General
moment invariants for linear Hamiltonian systems", Phys. Rev. A, p. 2572 (1992).



Eigen-emittances, cont.

e Inthe 1D case we found that: AZA” = e 1L,

* This is a special case of a famous theorem due to Williamson* that states?,

* for any real symmetric positive-definite 2nx2n matrix Z, there exists a

symplectic matrix A such that g 0 0 0
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 Though A is not unique, it is the case that, for any
matrix A that diagnolizes Z, the quantities (€4, €,,
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* €, =rmsemittances when Z is 2x2 block diagonal (i.e. if <xy>, <xp >,...= 0)
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*). Williamson, “On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems,” Amer. J. Math. 58 (1) (1936), 141-163.

#See, e.g., the texbook by Maurice de Gosson, “Symplectic Geometry and Quantum Mechanics,” 2006.




Eigen-emittances in 3D

* Inthe 1D case we found that

T 10
AZAT =1, L=y )
 The analgousresultin 3D is
T
AZA" =gl + &1, + &1,
100000 000000 000000
010000 000000 000000
000000 P (U ,_[000000
100 0000 10 001 00 1000 000
000000 000000 000010
000000 000000 000001

* Note that the code MaryLie has built-in capabilities to compute eigen-emittances
and related quantities.



Invariance of the eigen-emittances under linear
symplectic transport

Suppose that we have a distribution of particles and compute its 2" moments,
i.e. suppose we have computed the matrix given by Z_,=<z_,z, >

There exists a symplectic matrix A that diagonizes Z via the congruency relation,
AZA" =gl +¢,1, + &1,

Suppose we propagate particles to some final location via symplectic matrix M.
Then the final 2" moment matrix (e.g. at the end of the beamline) is

zZ! = MzZM'
Now consider the matrix B=AM™ :
BZ'B" = AM'MZM" (M"Y "'A" = AZA" =¢ I +¢,1, + &1,
Hence, the matrix B brings Z to normal form. Therefore we can also write:
BZ'B" =g/l + €)1, + €1,

8{ =&, i=(1,2,3), up to a reordering

We conclude that

The eigen-emittances are invariant under linear symplectic transformations



Subroutine to compute eigen-emittances

! < coord(6,nraysp) is the particle array with canonical variables (x,pX,y,py,t,pt) >
! < msk(nraysp) is a logical array used to mask off particles to be excluded >

ngoodloc=count (msk(1l:nraysp)) ! local # of "good" particles
call MPI ALLREDUCE (ngoodloc,ngood,l,mntgr,mpisum,lworld,ierror)
denl=1./ngood ! ngood is the global # of "good" particles

! compute beam centroid
avloc(1l)=sum(coord(1l,l:nraysp),msk(l:nraysp))*denl
avloc(2)=sum(coord(2,1l:nraysp),msk(l:nraysp))*denl
avloc(3)=sum(coord(3,1l:nraysp),msk(l:nraysp))*denl
avloc(4)=sum(coord(4,l:nraysp),msk(l:nraysp))*denl
avloc(5)=sum(coord(5,1l:nraysp),msk(l:nraysp))*denl
avloc(6)=sum(coord(6,1l:nraysp),msk(l:nraysp))*denl
call MPI ALLREDUCE(avloc,av,6,mreal,mpisum,lworld,ierror)

! compute second-order moments
vecm(1l)= sum((coord(l,l:nraysp)-av(l))*(coord(l,l:nraysp)-av(l)),msk(l:nraysp))*denl
vecm(2)= sum((coord(l,l:nraysp)-av(l))*(coord(2,1l:nraysp)-av(2)),msk(l:nraysp))*denl
vecm(3)= sum((coord(l,l:nraysp)-av(l))*(coord(3,1l:nraysp)-av(3)),msk(l:nraysp))*denl
vecm(4)= sum((coord(l,l:nraysp)-av(l))*(coord(4,l:nraysp)-av(4)),msk(l:nraysp))*denl
vecm(5)= sum((coord(1l,l:nraysp)-av(l))*(coord(5,1l:nraysp)-av(5)),msk(l:nraysp))*denl
vecm(6)= sum((coord(l,l:nraysp)-av(l))*(coord(6,l:nraysp)-av(6)),msk(l:nraysp))*denl
vecm(7)= sum((coord(2,l:nraysp)-av(2))*(coord(2,1l:nraysp)-av(2)),msk(l:nraysp))*denl
vecm(8)= sum((coord(2,l:nraysp)-av(2))*(coord(3,1l:nraysp)-av(3)),msk(l:nraysp))*denl
vecm(9)= sum((coord(2,l:nraysp)-av(2))*(coord(4,l:nraysp)-av(4)),msk(l:nraysp))*denl
vecm(1l0)=sum( (coord(2,l:nraysp)-av(2))*(coord(5,1l:nraysp)-av(5)),msk(l:nraysp))*denl
vecm(1ll)=sum((coord(2,l:nraysp)-av(2))*(coord(6,l:nraysp)-av(6)),msk(l:nraysp))*denl
vecm(1l2)=sum((coord(3,1l:nraysp)-av(3))*(coord(3,1l:nraysp)-av(3)),msk(l:nraysp))*denl
vecm(1l3)=sum((coord(3,1l:nraysp)-av(3))*(coord(4,l:nraysp)-av(4)),msk(l:nraysp))*denl
vecm(1l4)=sum((coord(3,1l:nraysp)-av(3))*(coord(5,1l:nraysp)-av(5)),msk(l:nraysp))*denl
vecm(1l5)=sum((coord(3,1l:nraysp)-av(3))*(coord(6,l:nraysp)-av(6)),msk(l:nraysp))*denl
vecm(1l6)=sum((coord(4,l:nraysp)-av(4))*(coord(4,l:nraysp)-av(4)),msk(l:nraysp))*denl
vecm(1l7)=sum((coord(4,l:nraysp)-av(4))*(coord(5,1l:nraysp)-av(5)),msk(l:nraysp))*denl
vecm(18)=sum( (coord(4,l:nraysp)-av(4))*(coord(6,l:nraysp)-av(6)),msk(l:nraysp))*denl
vecm(19)=sum( (coord(5,1l:nraysp)-av(5))*(coord(5,1l:nraysp)-av(5)),msk(l:nraysp))*denl
vecm(20)=sum( (coord(5,1l:nraysp)-av(5))*(coord(6,l:nraysp)-av(6)),msk(l:nraysp))*denl
vecm(21l)=sum( (coord(6,l:nraysp)-av(6))*(coord(6,l:nraysp)-av(6)),msk(l:nraysp))*denl
call MPI ALLREDUCE(vecm,gvecm,21,mreal,mpisum,lworld,ierror)



! compute the eigen-emittances:
k=1
do i=1,6
do j=i,6
gm(i,j)=gvecm(k)
gm(3j,1i)=gvecm(k)
k=k+1
enddo
enddo
call mmult(jm,gm,xgm)
call eig6(xgm,reval,aieval,revec,aievec)
n=1
do j=1,6
if(aieval(j).gt.0.d0)then
eig3(n)=aieval(j)
n=n+1
endif
enddo



