Progress on The Target System Design

Hisham Kamal Sayed & Harold Kirk

Physics Department

Brookhaven National Lab

Kirk McDonald

Joseph Henry Laboratories, Princeton University

Overview

- Target layout
- Current baseline
- Taper field calculations
- MARS simulation setup
- Muon production & momentum distribution
- Conclusion

Neutrino FACTORY LAYOUT

Target System Solenoid:

Capture μ^{\pm} of energies ~ 100-400 MeV from a 4-MW proton beam (E ~ 8 GeV).

Target System Current Baseline Design

- Production of 10¹⁴ µ/s from 10¹⁵ p/s (≈ 4 MW proton beam)
- Low-energy π's collected from side of long, thin cylindrical target
- Solenoid coils can be some distance from proton beam.
 - ≥ 10-year life against radiation damage at 4 MW.
- Proton beam readily tilted with respect to magnetic axis.
 - → Beam dump (mercury pool) out of the way of secondary π's and µ's.
- Shielding of the superconducting magnets from radiation is a major issue.
 - Magnet stored energy ~ 3 GJ

5-T copper magnet insert; 10-T Nb3Sn coil + 5-T NbTi outsert. Desirable to eliminate the copper magnet (or replace by a 20-T HTS insert).

Baseline Optimized Parameters (X. Ding et al)

- Optimization of target parameters for a mercury jet target - 20 T Peak Field
- particle production:
 - Protons KE= 2 -100 GeV.
 - For each KE production optimized by
 - Mercury jet radius
 - Proton beam angle
 - Crossing angle between the mercury jet and the proton beam. With an 8-GeV proton beam
 - Figure of merit: number of muons surviving through the neutrino factory front end channel

Baseline Optimized Parameters (X. Ding)

- > Hg Target
 - \succ θ_{Target} =0.137 rad
 - ➢ R_{Target}=0.404 cm
- Proton Beam
 - ► E=8 GeV
 - \triangleright θ_{Beam} =0.117 rad
 - > $\sigma_x = \sigma_y = 0.1212 \text{ cm}$ (Gaussian Distribution)
- Solenoid Field
 - ▶ IDS120h \rightarrow 20 T peak field at target position (Z=-37.5)
 - Aperture at Target R=7.5 cm End aperture R = 30 cm
 - ▶ Fixed Field Z = 1500 \rightarrow Bz=1.5 T

Production: Muons within energy KE cut 40-180 MeV

- > 3.27 X 10⁴ (N_{ini protons}=10⁵)
- ➢ N_{mesons}/N_{protons}=0.327

Target Particle Production with 15 T Peak Solenoid Field

- > Particle-capture requirement ($P_t \le 0.225 \text{ GeV/c}$)
 - ➢ B × r = 20 T × 7.5 cm = 150 T-cm
 - ➢ B × r = 15 T × 10 cm = 150 T-cm
- Fixed-flux requirement (Aperture requirement)
 - \blacktriangleright B × r² = 20 × 7.5² = 1125 T-cm²
 - \blacktriangleright B × r² = 15 × 10² = 1500 T-cm²
- MARS simulations with 15-T peak field & new aperture settings (taper radius r = 30 cm at all z)

IDS120H Target Solenoid

Filed Map from SC coils

IDS120H (R. Weggel)

Analytic form for Tapered Solenoid (K. McDonald)

The magnetic field of the target system varies from B_i at the target to B_f at the front end, over distance z_{end} .

Field Parameters: $B_i(z=-37.5)$ $B_f(z=z_{end})$ z_{end} .

MARS Simulation Setup

- Beam Pipe with constant R=30 cm (eliminate particle loss due to scrapping)
- Beam Pipe material changed to balckhole to speed calculations
- Added subroutine to m1510.f (FIELD) to calculate the field using inverse cubic equations

MARS Simulation Results

Muons+Pions count at z=50 m with K.E. 80-140 MeV

BROOKHAVEN

Muons Momentum Distribution at Z=50 m

 $B_z=20 \rightarrow 1.5 \text{ T}$ $N_p=1.6 \times 10^6$

 $B_z = 15 \rightarrow 1.8 \text{ T}$ $N_p = 4 \times 10^5$

FRONT END (ICOOL)

Muons count at the end of the front end within the following ecalc cuts $P_z = 0.1 - 0.3 \text{ [GeV/c]}$ $A_{x,y} = 0.015 - 0.030 \text{ [m]}$ $A_z = 0.150 \text{ [m]}$ $Rf_{freq} = 201.25 \text{ [MHz]}$ $\sigma_{x,y} = 3$

FRONT END (ICOOL)

Muons count at the end of the front end within the following ecalc cuts $P_z = 0.1-0.3$ [GeV/c] $A_{x,y} = 0.015-0.030$ [m] $A_z = 0.150$ [m] $Rf_{freq} = 201.25$ [MHz] $\sigma_{x,y} = 3$

TIONAL LABORATORY

Optimizing the Capture Section of the Neutrino Factory HANSEN, Ole

https://www.jlab.org/indico/contributionDisplay.py?sessionId=11&contribId=261&confld=0

