OPTIMIZED SOLENOID BASED CAPTURE MECHANISM FOR A MUON COLLIDER/NEUTRINO FACTORY TARGET SYSTEM

HISHAM KAMAL SAYED BROOKHAVEN NATIONAL LABORATORY

MAP COLLABORATION MEETING, FERMILAB, June 20 2013

Muon Capture in Target & Front END

- Capture Solenoid Field Study:
 - Optimizing quantity: Muon (Pions) count transverse capture
 - Target Solenoid peak field
 - Final end field
 - Optimizing quality: Muon (Pions) longitudinal phase space (transverselongitudinal coupling) – transverse-longitudinal capture
 - Taper field profile
- > Optimizing the time of flight of incident beam (Buncher-Rotator RF phase)
- Transverse focusing field in decay-channel-buncher-rotator
- > Match to ionization cooling channel for every end field case 1.5 T \rightarrow 3.5 T
- Performance of front end as a function of proton bunch length
- Realistic Coil Design & performance optimization

MUON COLLIDER/NEUTRINO FACTORY LAYOUT

Target System Solenoid: Capture μ^{\pm} of energies ~ 100-400 MeV from a 4-MW proton beam (E ~ 8 GeV).

TARGET SYSTEM CURRENT BASELINE DESIGN

- ► Production of $10^{14} \,\mu/s$ from $10^{15} \,p/s$ (≈ 4 MW proton Tungsten beads beam)
- Proton beam readily tilted with respect to magnetic axis.
- Shielding of the superconducting magnets from radiation is a major issue.
- ➢ Hg Target
- Proton Beam
 - ≻ E=8 GeV
- Solenoid Field
 - > IDS120h \rightarrow 20 T peak field at target position (Z=-37.5)
 - > Aperture at Target R=7.5 cm End aperture R = 30 cm
 - ▶ Fixed Field $Z = 15 \text{ m} \rightarrow \text{Bz}=1.5 \text{ T}$

5-T copper magnet insert; 10-T Nb3Sn coil + 5-T NbTi outsert. Desirable to eliminate the copper magnet (or replace by a 20-T HTS insert).

BROOKHAVEN

4

Hisham Sayed - MAP meeting 2013

-75 cm

Jet/Beam Direction

-37.5 cm

TAPERED TARGET SOLENOID OPTIMIZATION

LONGITUDINAL PHASE SPACE DISTRIBUTIONS (SHORT VERSUS LONG TAPER)

PHASE SPACE DISTRIBUTIONS (SHORT VERSUS LONG TAPER)

T-Pz Correlations at end of decay channel

Long Solenoid taper:

- > More particles
- More dispersed (misses the buncher acceptance windows)

Short Solenoid taper:

more condensed distributions that fits more particles within the buncher acceptance windows

Long Taper

Short Taper

BROOKHAVEN

PHASE SPACE DISTRIBUTIONS (SHORT VERSUS LONG TAPER)

T-Pz phase space at end of decay channel

Long Taper 40 m

Long Solenoid taper:

6/20/13

- > More particles
- More dispersed (misses the buncher acceptance windows)

Short Taper 4 m

Short Solenoid taper:

- Higher density t-pz distribution
- Fits more particles within the acceptance of buncher/rotator

PHASE SPACE - SHORT VERSUS LONG TAPER

PERFORMANCE DEPENDENCE ON TIME OF FLIGHT (RF PHASE)

FRONT END PERFORMANCE

High statistics tracking of Muons through the front end

Hisham Sayed - MAP meeting 2013

FRONT END PERFORMANCE

Using longer cooling section (200 Cooling cell)

High statistics tracking of Muons through the front end

Hisham Sayed - MAP meeting 2013

MUON YIELD VERSUS END FIELD & BUNCH LENGTH

to +/- 2.8 T ionization cooling channel)

6/20/13

NEW SHORT TARGET CAPTURE REALISTIC MAGNET (WEGGEL)

NEW SHORT TARGET CAPTURE MAGNET (WEGGEL)

Muon Target Short Taper Magnet taper length =7 m- B=20-1.5 & 2.5 T

7/25/2013

Hisham Sayed BNL

NEW DECAY CHANNEL REALISTIC MAGNET (WEGGEL)

The pions produced in the target decay to muons in a Decay Channel (50 m)
Three superconducting coils (5-m-long) Bz(r=0) ~ 1.5 or 2.5 T solenoid field.
Suppress stop bands in the momentum transmission.

IDS120L20-1.5T 7m

Magnet	Length [m]	Inner R [m]	Outer R [m]	J [A/mm ²]
1	0.19	0.6	0.68	47.18
2	3.8	0.6	0.63	40.00
3	0.19	0.6	0.68	47.18

Hisham Sayed BNL

REALISTIC COIL BASED DECAY CHANNEL SOLENOID STOP BAND

STUDY

Suppression of stop bands in the Decay Channel:

Tracking muons through decay channel 10 cells (50 m) optimize magnet design for best performance

IDS120L20to1.5T7m

IDS120L20to1.5T7m

7/25/2013

CONCLUSION & SUMMARY

1- Target Solenoid parameters that affect the particle Capture & Transmission at target or after cooling

Initial peak Field – Taper length – End Field

2- Impact:

Short taper preserves the longitudinal phase-space \rightarrow muons can be captured efficiently in the buncher-phase rotation sections and more muons at the end of cooling.

The maximum yield requires taper length of 7-5 m for all cases (20-15T) (1.5-3.5T) for any bunch length.

3- Final constant end field increases the yield by 20% for every 1 T increase in the field beyond the 1.5 T baseline

4- Initial proton bunch length influence the muon/proton yield at the end of the cooling channel $\sim 3\%$ reduction per 1 nsec increase in bunch length.

5- Realistic Coil design.

