GLOBAL OPTIMIZATION OF THE MUON COLLIDER/NEUTRINO FACTORY FRONT END

HISHAM SAYED

BROOKHAVEN NATIONAL LABORATORY

S. Berg, X. Ding, H. Kirk, K. McDonald, J. Qiang, R. Ryne, D. Stratakis

FRONT END MEETING 10 September 2013

GLOBALLY OPTIMIZING MUON TARGET & FRONT END

- 1- Target (Captured Beam quantity & quality)
- 2- Decay channel
- 3- Buncher Phase rotator

High performance Optimization Tools on NERSC

> Target:

- → Capture Field → Muon (Pions) count transverse capture
 - \rightarrow Muon (Pions) longitudinal & transverse phase space
- Target Proton Beam geometry (size incident angle) pion count
- \blacktriangleright Decay Channel: \rightarrow Control stop band losses (optimize realistic coil design)
- ➤ Decay Channel Buncher Phase rotator → Length- RF (voltage- frequency phase)
- Transverse focusing field in decay channel-buncher-rotator
- ➢ Broadband match to ionization cooling channel for every end field case 1.5 T → 3.5 T
- Realistic Coil Design & performance optimization
- Ionization cooling channel

Parameters which effects the performance of the overall front end in every system

- Capture Solenoid Field Study:
 - Optimizing quantity: Muon (Pions) count transverse capture
 - Target Solenoid peak field
 - Final end field
 - Optimizing quality: Muon (Pions) longitudinal phase space (transverselongitudinal coupling) – transverse-longitudinal capture
 - Taper field profile
- Optimizing the time of flight of incident beam (Buncher-Rotator RF phase)
- Transverse focusing field in decay-channel-buncher-rotator
- > Match to ionization cooling channel for every end field case $1.5 \text{ T} \rightarrow 3.5 \text{ T}$
- Performance of front end as a function of proton bunch length
- Realistic Coil Design & performance optimization

NUMERICAL NONLINEAR GLOBAL OPTIMIZATION ALGORITHMS

Global Optimization Algorithms:

Disadvantage: Computationally expensive (requires large number of iterations to converge) Advantage: Guarantee of finding the global optimum (without falling to the nearest local maxima/minima).

Expensive objective evaluations: (Tracking large number of particles)

- Fast converging algorithms (problem dependent)
- High performance parallel environment:
 - Run parallel evaluations of the objective functions (Parallel Evolutionary algorithms)
 - Each evaluation of the objective run in parallel to limit the cost of every evaluation (parallel Icool- R. RYNE).

Implemented algorithms:

Parallel Differential Evolutionary Algorithms (J. Qiang): stochastic operators iteratively improve a population of individuals (candidate solutions) according to an adaptation criterion (the objective function)

Stochastic based optimizer – Global nonlinear optimizer which works well with problems with many local minima – Computationally expensive but running in parallel reduces the cost.

Nelder-Mead:

S SINGULAR FUNCTION

Direct search method (non gradient based) – Computationally less expensive – Not a true "Global Optimizer" but can work with local minima although not guaranteed – Faster convergence with not so hard problems.

POWELL'S SINGULAR FUNCTION

Tools:

Parallel Differential evolution algorithm that works with with parallel lcool – (future includes G4BL)

Conventional optimization algorithm "Nelder-Mead" with parallel code (MPI ICOOL)

- ➢ One parameter "decay channel length" → one objective (N muons within accelerator acceptance cuts)
- Converged after 200 icool calls (12 generations).

Random search in the parameter space (good for the global minima)

More robust in case of close local minima

BROOKHAUEN

TARGET SYSTEM CURRENT BASELINE DESIGN

- Production of 10¹⁴ µ/s from 10¹⁵ p/s (≈ 4 MW proton Tungsten beads beam)
- Proton beam readily tilted with respect to magnetic axis.
- > Hg Target
- Proton Beam
 - ≻ E=8 GeV
- Solenoid Field
 - > IDS120h \rightarrow 20 T peak field at target position (Z=-37.5)
 - > Aperture at Target R=7.5 cm End aperture R = 30 cm
 - ➤ Fixed Field Z = 15 m \rightarrow Bz=1.5 T

5-T copper magnet insert; 10-T Nb3Sn coil + 5-T NbTi outsert. Desirable to eliminate the copper magnet (or replace by a 20-T HTS insert).

Production: Muons within energy KE cut 40-180 MeV end of decay channel

$$> N_{\mu+\pi+k}/N_{P}=0.3-0.4$$

➢Beam – Target geometry optimization (X. Ding)

SC magnets

9/10/13

TAPERED TARGET SOLENOID OPTIMIZATION

LONGITUDINAL PHASE SPACE DISTRIBUTIONS (SHORT VERSUS LONG TAPER)

PHASE SPACE DISTRIBUTIONS (SHORT VERSUS LONG TAPER)

Longitudinal phase space at end of decay channel

Long Taper 40 m

Long Solenoid taper:

- > More particles
- ➤ Large time spread → large longitudinal emittance

Short Solenoid taper:

- ➤ Smaller time spread → smaller longitudinal emittance
- Fits more particles within the acceptance of buncher/rotator

Short Taper 4 m

10

9/10/13

PHASE SPACE - SHORT VERSUS LONG TAPER

o/0 90

Value 22 Value

변40 의 J 30

5

Transverse emittance shaped by capture solenoid

o/0 0 Transverse Emittance % -Value from Initial, 2 Difference ± 2 9 25 5 10 15 20 30 35 40 Capture Solenoid Taper Length [m]

Transverse emittance decreases by 8% with solenoid taper length going $8 \rightarrow 40$ m

Time Spread increase by 90% with solenoid taper length going $8 \rightarrow 40$ m

20

Capture Solenoid Taper Length [m]

15

10

BROG

30

35

40

25

Time spread shaped by capture solenoid

9/10/13

DEPENDENCE OF TRANSVERSE EMITTANCE & CAPTURE EFFICIENCY ON PEAK FILED

Transverse emittance shaped by capture

solenoid

Transverse emittance doubles as peak field decreases from 50 T \rightarrow 20 T

Number of pions+mu+k within transverse 6σ cut and Pz=0.0-1.0 GeV/c

9/10/13

MARS SIMULATIONS & TRANSMISSION

Muon count within energy cut at end of decay channel

FRONT END PERFORMANCE

PERFORMANCE DEPENDENCE ON TIME OF FLIGHT (RF PHASE)

BROOKHAUEN

FRONT END PERFORMANCE

High statistics tracking of Muons through the front end

MUON YIELD VERSUS END FIELD

Performance of FE as function of Constant solenoid filed in Decay Channel – Buncher – Rotator (matched to +/- 2.8 T ionization cooling channel)

PROTON BUNCH LENGTH

 $\sim 3\%$ loss per 1 nsec increase in bunch length

9/10/13

NEW SHORT TARGET CAPTURE REALISTIC MAGNET (WEGGEL)

NEW SHORT TARGET CAPTURE MAGNET (WEGGEL)

Muon Target Short Taper Magnet taper length =7 m- B=20-1.5 & 2.5 T

NEW DECAY CHANNEL MAGNET (WEGGEL)

IDS120L20-1.5T 7m

Magnet	Length [m]	Inner R [m]	Outer R [m]	J [A/mm²]
1	0.19	0.6	0.68	47.18
2	3.8	0.6	0.63	47.18
3	0.19	0.6	0.68	47.18

Modified - IDS120L20-1.5T 7m

Magnet	Length [m]	Inner R [m]	Outer R [m]	J [A/mm²]
1	0.19	0.6	0.68	47.18
2	3.8	0.6	0.63	40.00
3	0.19	0.6	0.68	47.18

Hisham Sayed BNL

NEW DECAY CHANNEL REALISTIC MAGNET (WEGGEL)

The pions produced in the target decay to muons in a Decay Channel (50 m) Three superconducting coils (5-m-long) $Bz(r=0) \sim 1.5$ or 2.5 T solenoid field. \succ Suppress stop bands in the momentum transmission.

Axial-field profile of two Decay-Channel modules

IDS120L20-1.5T 7m

Magnet	Length [m]	Inner R [m]	Outer R [m]	J [A/mm²]	
1	0.19	0.6	0.68	47.18	NATI
2	3.8	0.6	0.63	40.00	
3	0.19	0.6	0.68	47.18	LAB

REALISTIC COIL BASED DECAY CHANNEL SOLENOID STOP BAND STUDY

Suppression of stop bands in the Decay Channel:

Tracking muons through decay channel 10 cells (50 m) optimize magnet design for best performance

Transmission:Constant 1.5 Solenoid Field%67IDS120L20to1.5T7m%62Modified IDS120L20to1.5T7m%66

IDS120L20to1.5T7m

IDS120L20to1.5T7m

25

CONCLUSION & SUMMARY

1- Target Solenoid parameters that affect the particle Capture & Transmission at target or after cooling

Initial peak Field – Taper length – End Field

2- Impact:

Short taper preserves the longitudinal phase-space \rightarrow muons can be captured efficiently in the buncher-phase rotation sections and more muons at the end of cooling.

The maximum yield requires taper length of 7-5 m for all cases (20-15T)(1.5-3.5T) for any bunch length.

3- Final constant end field increases the yield by 20% for every 1 T increase in the field beyond the 1.5 T baseline

- 4- Initial proton bunch length influence the muon/proton yield at the end of the cooling channel $\sim 3\%$ reduction per 1 nsec increase in bunch length.
- 6- Realistic Coil design for the capture target and decay channel.

7- Open Questions : ?! Include cooling channel ? – Other items

