FRONTEND DESIGN & OPTIMIZATION STUDIES

HISHAM KAMAL SAYED BROOKHAVEN NATIONAL LABORATORY June 26, 2014

Collaboration:

J. S. Berg - X. Ding - V.B. Graves - H.G. Kirk - K.T. McDonald - D. Neuffer

- R. B. Palmer - P. Snopok - D. Stratakis - R.J. Weggel

FRONT END DESING & OPTIMIZATION

OUTLINE

Goal : Optmize number of useful muons and limit the proton beam power energy transmitted to the first RF cavity in the buncher Involved systems:

- Carbon target geometry
- Capture field
- Chicane design
- Be absorber
- 1- Target geometry parameters:

Carbon target length, radius, and tilt angle to solenoid axis

- 2- Target Capture field: constant field length taper length end field
- 3- Chicane parameters: Length curvature focsuing field
- 4- Be absorber thickness and location

5- Energy deposition in the target area + Chicane will be evaluated and involved in the optimization – future work.

MUON BEAM PRODUCTION

Challenges with muon beams:

- Short lifetime ~ 2 μ s
- Require fast and aggressive way of reducing the muon beam transverse and longitudinal emittance to deliver the required luminosity

Production and acceleration of muon beam

High energy proton beam on Hg or graphite target

Captured pion beam has a large emittance Pions decay into muons with even larger emittance

TAPERED CAPTURE SOLENOID OPTIMIZATION

Inverse-Cubic Taper

- Initial peak Field B₁
- Taper length z
- End Field B_2

$$B_{z}(0, z_{i} < z < z_{f}) = \frac{B_{1}}{[1 + a_{1}(z - z_{1}) + a_{2}(z - z_{1})^{2} + a_{3}(z - z_{1})^{3}]^{p}}$$

$$a1 = -\frac{B_{1}}{pB_{1}} \qquad a_{2} = 3\frac{(B_{1} / B_{2})^{1/p} - 1}{(z_{2} - z_{1})^{2}} - \frac{2a_{1}}{z_{2} - z_{1}}$$

$$a_{3} = -2\frac{(B_{1} / B_{2})^{1/p} - 1}{(z_{2} - z_{1})^{3}} + \frac{a_{1}}{(z_{2} - z_{1})^{2}}$$

- Impact of the Peak field on the number and phase space of the captured pions
- Impact of taper length on the number and phase space of the captured pions/muons
- Impact of the end field on the number of captured muons

Target Solenoid on axis field

NEW SHORT TARGET CAPTURE WITH REALISTIC SUPERCONDUCTING MAGNETS

http://physics.princeton.edu/mumu/target/hptw5_poster.pdf

Target geometry parameters (channel includes target + chicane + decay channel):

- \rightarrow Carbon target length -- radius -- tilt angle to solenoid axis
- \rightarrow Proton beam size
- Objective: optmize at z=70 m

 $\Sigma \pi + \mu + \kappa$ within pz < 450 MeV/c (to compensate for the Be absorber effect) pt < 150 MeV/c

Initial lattice in G4Beamline – using GEANT4 physics list QGSP

- \blacktriangleright B_z = 20 to 2.0-7.0 T over variable taper length
- > Initial protons K.E. = 6.75 GeV σ_t = 2 ns
- Tracking includes target + chicane + decay channel

The optmization run 6 hours on 240 cores at NERSC using Multiobjective – Multivariable parallel genetic algorithm

Optimal working point 1-3 degrees

- Optimizing the target geomtery and proton beam parameters.
- Objective is the muon count at end of decay channel

Optimal working point 1-2 mm

Optimal working point 70-90 cm

- Optimizing the target geomtery and proton beam parameters.
- Objective is the muon count at end of decay channel

Optimal working point ~ 1 cm, but r < 1 cm not studied

Optimal working point for C-target

- Proton beam size 1-2 mm
- ➤ C-rod Length 80 cm
- C-rod radius < 1 cm</p>

Beam + target angle to solenoid axis 2-3 degree (50-75 mrad)

Dependence of transverse emittance & Capture efficiency on Peak Field

Emittance growth due to betatron oscillation decohenrce:

- Pions created at the target
 - Small radial extent (small transverse emittance)
 - Large spread in energy and axial point of origin
- Particles with different energy and different transverse amplitude rotate over the transverse phase space at different oscillation frequencies.
- Strong solenoid field stabilizes the emittance growth by reduction of axial extend
- The final projected transverse emittance is smaller for higher fields

MARS Simulation of π^+ & μ^+ production from 8 GeV proton beam on Hg target.

- Emittance calculation from covariance matrix
- particle count at end of the target

Optmization of the target end field and decay channel – (no buncher- rotator RF) Points with differing colors have different target geomtry parameters

MARS SIMULATIONS & TRANSMISSION

Muon count within energy cut at end of decay channel

Adiabatic condition:

length scale over which the magnetic field changes is large compared to betatron wavelength of the helical trajectory of a particle

 $\frac{2p}{eB^2}\frac{dB}{dz} << 1$

Muon count at z=50 increases for longer solenoid taper

MARS15 Simulation: Counting muons at 50 m with K.E. 80-140 MeV

BUNCHER AND ENERGY PHASE ROTATOR

Target: π production

Drift: π 's decay to μ 's + creation of time-energy correlations

Adiabatic bunch:

Converts the initial single short muon bunch with very large energy spread into a train of 12 microbunches with much reduced energy spread

Energy phase rotatation: Align microbunches to equal energies - RF 232 to 201 MHz - 12 MV/m Transverse ionization cooling: RF 201.25 MHz

LONGITUDINAL PHASE SPACE DISTRIBUTIONS (SHORT VERSUS LONG TAPER)

Temporal difference between the arrival time at a position z of a particle with a nonzero transverse amplitude and that of a particle with zero transverse amplitude

$$\Delta t \approx \frac{p_{\perp}^2 E}{2c^2 p^3} \int_0^z \frac{B_z(z')}{B_z(0)} dz'$$

Short taper 4 m

Shorter bunch length Higher longitudinal phase space density

Muon beam emittance calculation was done at the end of the decay channel at z = 70 m Initial proton bunch has pancake temporal distribution $\sigma_t = 0$ ns for this calculation

NUMERICAL NONLINEAR GLOBAL OPTIMIZATION ALGORITHMS ON NERSC

Muon+/proton

Expensive objective evaluations on CRAY: (In collaboration with LBNL)

- High performance parallel environment: N cores > 1000
 - Run parallel evaluations of the objective functions (Parallel Evolutionary algorithms)
 - Each evaluation of the objective run in parallel to limit the cost of every evaluation (parallel Icool – G4BL, MARS .. etc.).

Implemented algorithm:

Parallel Differential Evolutionary Algorithms

Muon Front End Global Optimization

- Multivariable optimization of the Muon Accelerator Front End:
 - Optimal taper length
 - Optimizing the broad band match to the 4D ionization cooling channel

End Field Limitations:

- Operation of RF cavities in magnetic fields

50 40: z 30 20 10 0 0.5 0.6 0.7 0.8 0.2 0.3 0.9 0 0.10.4 P [GeV/c] 0.16 0.155 0.15 0.145 e 0.14 0.135 0.13 0.125 0.12 -3 -0 -1 -2 -4

Momentum distribution of "useful muons" at end of phase rotator

Ptot end of rotator

70:

60;

FRONT END PERFORMANCE AT DIFFERENT END FIELDS

Performance of the Front end without the chicane End fields higher than 4 T do not show any improved performance

- Short taper (6 m) integrated with the new chicane from Pavel's G4BL lattice (same parameters as in ICOOL)
- Started optimizing the chicane parameters (initial values D. Neuffer's icool lattice)
 - Chicane half length L (initial value L = 6.0)
 - Chicane radius of curvature h (initial value = 0.05818 1/m) \Rightarrow Bend angle = 351 mrad
 - Be absorber length (initial value = 100.0 mm)
 - On-axis field is a free parameter optimization will be carried for B = 2.0, 2.5, 3.0 T
 - Chicane aperture 40 cm (might be a free parameter as well)
- Objectives \rightarrow minimize total KE of transmitted protons Σ KE_{protons}

→ Maximize number of transmitted muons $\Sigma \pi + \mu + K$ within $0 < p_z < 450$ MeV/c (to compensate for the Be absorber effect) & $0 < p_t < 150$ MeV/c

Run 100 K particles through the chicane with initial parameters $\Sigma \kappa E_{protons} = 29 \text{ GeV } \& \Sigma N_{mu} = 4377$

Run 500 K particles through the chicane with automated optimization algorithm Chicane location: z = 21 m from target Absorber location: end of chicane

Run 500 K particles through the chicane with automated optimization algorithm Chicane location: z = 21 m from target Absorber location: end of chicane

Run 500 K particles through the chicane with automated optimization algorithm Chicane location: z = 21 m from target Absorber location: end of chicane

Absorber

Higher end fields increases muon transmission through the front end and also increase the total KE of the transmitted protons after the absorbers $B_0 = 3.0 \text{ T}$

CONCLUSION & SUMMARY

- New objective for front end optimization
 - Handle excesseive proton beam + unwanted secondaries
 - Capture as much muons
- Energy deposition has to be integrated in the optimization study
 - Partitioning of energy deposited in
 - Chicane
 - Be absorber
- Optmization includes
 - Target geomtery
 - Chicane field + chicane geomtery
 - Be absorber
 - Re-tune buncher & phase roation

