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1. Introduction

Among the main issues for pion production in solid or liquid targets for neutrino factories
are the evacuation of the average power deposited by the intense proton beam incident on
the target and the instantaneously (within a few nano-seconds) deposited energy leading
to rapid temperature rises and stresses in the material. In this basic assessment the
response of the target material to the rapid heating will be evaluated, assuming material
constants independent of temperature and pressure. This study serves to identify relevant
parameters and critical areas where non-linear effects become important and where more
sophisticated methods and tools have to be applied.

2. Input Parameters

For the use of solid targets, Tantalum has been suggested (Ref. 1) and for liquid targets,
mercury is proposed (Ref. 2). The constants used for both these materials are given in
Annex I. Most of the results will, however be quoted in relative units, so that they can
readily be scaled to targets with different material constants and dimensions.
For the proton beam an average power of 4 MW is considered, incident on the target in
short energy pulses (bursts) of 80 kJ/burst each, at 50 Hz. A parabolic radial energy
deposition density ρ is assumed, dropping to zero at the outer radius R = 1 cm and being
uniform along the target:
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J/gr. 40   0 =ρ

With this assumption about 25% of the incident energy remains in the considered Ta-
target of 2 cm diameter and 20 cm length.

3. First Order Approximations

Converting the peak energy density per burst into an instantaneous temperature rise along
the center of the target, yields:

Tafor  K    265    T0 =∆

and Hg.for  K    286    T0 =∆

Now, since the rise time of the temperature is of the same order of magnitude as the
deposition of the beam energy, which is 10-9 s, thermal expansion is initially prevented by
the mass inertia of the material. The resulting instantaneous stress (∆σ) and pressure (∆P)
rise at time t = 0 is given by:
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and liquid. afor      
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For the above parameters this yields along the center:

Tafor   MPa  826   0 =∆σ

and Hg.for   MPa  1150  0 =∆P

Assuming now linear elastic behaviour of the target, the instantaneously pressurized
material will start to oscillate since at time zero it is not in its equilibrium position. This
can readily be compared to a pendulum for which the location of its "equilibrium"
suspension is instantaneously be shifted. If this shift occurs slower and within times
comparable to the pendulum frequency, its oscillation amplitude will be smaller, and if
this shift occurs very slowly it will not oscillate at all. The latter case corresponds to a
"slow" heating with "quasi-static" thermal expansion.

Note that the response of material to rapid heating is different from that induced by the
impact of a supersonic bullet which actually displaces material radially with supersonic
velocity along its path. This would be equivalent to displacing the mass of the pendulum
with supersonic speed which is different from displacing rapidly its equilibrium
suspension.

For liquid targets it is relevant to assess the energy Ec stored in the material due to the
initially prevented thermal expansion of the target as this might be converted into kinetic
energy ripping the liquid apart. The energy density Vc ddE is given by:
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=

By integration over the volume, the total energy Ec, convertible to velocity for the
assumed Hg-target with a length of 25 cm is about

Ec = 780 J/pulse for Hg

and the "average" kinetic power, Wc to be handled in the vicinity around this "exploding"
liquid is

Wc = 39 kW.

This is with the assumed parameters about 4 % of the total deposited power.

By inspecting the kinetic energy density Vc ddE and its integral over the target volume it

can be shown that with beams of normalized intensity the total kinetic energy Ec depos-

ited in the target is proportional to the temperature rise ∆T0 on the target axis. From this it

results that Ec depends on the radius R of the normalized beam as 1/R2, i.e. Ec rises
sharply with narrow beams.
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The order of magnitude of the velocity with which the boundary of the liquid target
material can explode in radial direction is simply given by the radial, thermal expansion
at the boundary divided by the time over which the sound travels across the radius of the
target:

4v 0Tc V ∆≈ α

c: velocity of sound.

This estimate yields for the considered cases that the material velocities during
oscillations or at explosion are only of the order of a percent of the sound velocity. As a
consequence one may believe that supersonic shock phenomena are not yet relevant at the
above-assumed parameters.

Still, the problem is unsolved whether the liquid will explode once the pressure turns to
negative during its oscillation, rather than sustaining negative pressures and continuing to
oscillate, as one may expect for solids.

The involved frequencies of the radial oscillations are of the order of
4R.c    f =R

With the sound velocity of 3.8 km/s and 1.3 km/s for Ta and Hg respectively this yields

Tafor    kHz  95    f ≈R

Hgfor    kHz  32    f ≈R

which is within the ultra-sound region.

4. Results

4.1 Solids

The linear response in space and time of mass material submitted to an initial stress or
pressure distribution is described by the classical wave equation. In cylindrically
symmetrical configuration, as can be assumed for the targets concerned, the wave
equation can be solved with the appropriate initial and boundary conditions by a Fourier-
Bessel series. In an early assessment this has been reported in Ref. 3 for longitudinally
and radially constrained solids. The extension of this work to radially free solid and liquid
targets is given in Ref. 4.

Solving the wave equation yields all relevant parameters, like radial, circumferential and
axial stresses for solids and pressure and material velocities for liquids as function of
radius and time (Ref. 4).

Here we quote only final results. Fig. 1 shows the equivalent von Mieses stress vs. time
along the center of the rod and Fig. 2 gives the same at its free boundary. The stress is
given in units of 0LE T∆α  and the time in units of R/c. This allows to use these plots for

any material, dimension and temperature rise, however all with parabolic temperature
distributions up to the outer radius R. It results that at t = 0, where all principal stress
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components are equal (see chapter 2) and where the solid is simply put under "hydraulic"
pressure, the equivalent stress is zero. Due to subsequent acceleration and displacements
the equivalent stresses start to oscillate and a maximum of

MPa 496  E 8.1 0L =∆Tα

is reached in the center of the Ta-rod after

s. 3.7  cR 4.1 µ=

Thereafter it continues to oscillate in a nearly harmonic fashion with a frequency of about
130 kHz close to the estimated value given in chapter 3. At the boundary a maximum
equivalent stress of

MPa 358  E 3.1 0L =∆Tα

is reached. Both the values at the center and at the boundary are still within the elastic
limit of Ta at room temperature. These results are in excellent agreement with those
quoted in Ref. 1, which were achieved with the finite element code ANSYS. The
response to such stresses occurring at 50 Hz and possibly at elevated temperature (due to
slow cooling) has to be assessed further.

One may speculate that the peak stresses can be reduced by longer proton bunches where
the heating occurs slower and where mass inertia effects are reduced. In Fig. 1 and Fig. 2
the equivalent stresses are also shown for continuous heating over longer duration

10. and 2 1, 0.5,  of 0θ

Rct  00 =θ

 time.heating  t0 =

As however expected, this effect becomes significant only above ,1 0 ≈θ corresponding to

Ta.for   s 6.2  t0 µ=

4.2 Liquids

In a similar fashion as for solids the wave equation has been solved for a radially free
liquid with an initial, parabolic temperature and thus pressure distribution. Fig. 3 and
Fig. 4 show the pressure and the material velocity respectively vs. radius at different
times. The pressure is given in units of κα 0V T∆ , the velocity in units of 0V  c Tα , the

radius in units of R and the time parameters in R/c. These plots are generally valid for
any material constants with a parabolic energy deposition density. Fig. 5 and Fig. 6 show
the pressure at r = 0 and the material velocity at r = R respectively vs. time. At times
θ > 0.74 (t > 5.7 µs for Hg) the pressure becomes negative, i.e. as of this instant
cavitation (brake-up) of the liquid may occur and all subsequent pressure and velocity
profiles are no longer valid. However, as can be seen in Fig. 6 the maximum velocity at
the boundary is reached at the same time. Thus, in case of immediate cavitation for P<0
the material will fly off at the rim with a velocity of

0V 0.54  cv̂ T∆= α
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or Hg,for   m/s 36  v̂ =

which is double the value estimated in paragraph 3. This may be explained by the fact
that there the average velocity is given while here the peak velocity is quoted.

For illustration, a Hg-droplet flying off vertically with this velocity will ideally reach a
maximum height of 65 m.

Again the central pressure and the velocity at the boundary are reduced by extending the
time of heating as illustrated in Fig. 5 and Fig. 6. As for solids this effect sets in only for
durations of heating of . 4t0 sµ>
As can be seen from the above considerations the pressure and the material velocity both
depend on the compressibility like

κκ 1 ~ v   and   1~P

Thus increasing the compressibility would have a beneficial effect. Indeed, liquid metals
"loaded" with bubbles or liquid jets made of micro-droplets have been suggested which
could substantially change the response of liquid targets modified in such a way.

4.3 Damping of oscillations inside a 20 T solenoid

As one can see from Fig. 6 the material at the boundary of the target moves radially
similar to a harmonic oscillator. Since it is envisaged to place the Hg-target inside a
solenoid with an axial magnetic field of 20 T one can estimate the change of the
oscillation, associating it with an oscillator, magnetically damped by a term proportional
to its velocity. The damping time δ is

.B  2   2
zερδ =

ε   : Electrical conductivity of Hg
Bz : Field of the solenoid, 20 T
ρ  : Density of Hg

Putting in the numbers, this yields:

δ ≈ 67 µs.

Since this is large compared to the time t ≈ 5.7 µs to reach the first peak of velocity,
damping can be neglected for the first oscillations, i.e. the velocities displayed in Fig. 6
over the first 20 µs will not be reduced significantly and, if the material brakes up at P<0
it will fly off at the velocity estimated above.
Still, these results must be considered as somewhat pessimistic, since nevertheless some
internal friction and braking will occur due to surface tension and viscosity of the liquid.
It may however be expected that these effects are even smaller than the magnetic friction.
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5. Axial and Lateral Oscillations

Throughout the above considerations, axially constrained targets were assumed. In
instantaneously heated cylinders, free at both ends, also axial relaxation waves will
propagate from both ends towards the center with the velocity of sound.

Over the time the radial pressure wave has propagated from the boundary to the center,
the axial wave has propagated by about the same distance, i.e. in our case 1 cm, from the
free ends towards the center. Thus for long targets most of the central part can still be
considered as axially constrained over many periods of radial oscillations. A good
estimate for the axial stress resp. pressure is

solid afor      )(     ˆ rTE Lz ασ ±=

and liquid. afor       
)(

   ˆ V

κ
α rT

Pz ±=

If the length heated by the proton beam is shorter than the actual target rod, like for the
toroid, discussed in ref. 1, axial stress waves will propagate also into the adjacent, not
heated zones. Moreover, long, slender solid rods put under axial stress may also respond
to this load by buckling.

When by mis-stearing of the incident proton beam onto the target a temperature
distribution is created which is not rotationally symmetric around the target axis, bending
stresses, like in a bi-metal, will occur. The equilibrium shape of the target is "bent" while
due to mass inertia the target is still straight at time zero. It will start to oscillate with its
fundamental lateral frequency :f"

   
2

      f
2L

BIco
π="

I   : Moment of inertia
B  : Cross-section area
L  : Target length

co : ρE  velocity sound Axial

which is for a 20 cm long Ta-target
Hz 600  f ≈"

and which is, as expected much lower than the axial ( kHz  7.8  f ≈z ) and in particular the

radial oscillation ( kHz  95 f ≈R ).

The lateral oscillations will lead to further loading of the material and may continue
during a time over which the thermal gradient persists, which is of the order of 0.5 s.

6. Conclusion

It has been shown that with the assumed parameters and in particular with the maximum
energy deposition density of 40 J/gr along the target center, a Ta-target with a diameter of
2 cm will resist to a single proton burst at room temperature. Indeed in this case the peak
stresses are still below the yield strength of the material. Depending now on the cooling
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of the target, its average temperature will stabilize at an elevated level and target failure is
likely to occur. Moreover, at 50 Hz, which amounts to 4.3 x 106 pulses per day, fatigue
will set in rather quickly, even when the load from each burst remains below the yield
strength.

Unfortunately, it will not be possible in a neutrino factory to extend the bunch length, i.e.
the heating duration to the order of µs, where stress waves in the material start to
decrease. Increasing the beam and together with it the target diameter, reduces the local
energy density. At best, relevant parameters, like stored kinetic energy, stresses, pressures
and material velocities, scale down with 1/R2.

As a pessimistic assumption for liquid targets, cavitation may set in as soon as the
pressure becomes negative in the target which is about 6 µs after the proton burst.
Whether this starts in the center where the largest depression occurs first or close to the
boundary where at moderate negative pressures the highest velocities arise, cannot be
answered by this classical assessment. More sophisticated methods and computer codes
will have to be applied. The strong magnetic field of 20 T of the solenoid around the
target will not damp significantly the initial velocity of the target material vibrating or, in
the case of cavitation, exploding in radial direction.
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Annex 1

Material Constants for Tantalum

Density: 33 /10  x 16.8   mkg=ρ

Young's Modulus: 210 / 10 x 16    mNE =
Linear Thermal Expansion Coefficient: 16 10 x 5.6  −−= KLα
Specific Heat: )  (  151V etemperaturroomatJ/kg Kc =
Poisson Ratio: 31 =ν

Velocity of Sound:
( )

( )( )  km/s.
vv

vE
c 83  

21 1

1
  =

−+
−=

ρ

Material Constants for Mercury

Density: 33 /10  x 13.5   mkg=ρ

Compressibility: Nmx / 10   45.0  210−=κ
Volume Thermal Expansion Coefficient: 1-5

V  10 x 18.1  -K=α
Specific Heat: J/kg Kc  140  V =

Velocity of Sound: km/sc  3.11 == κρ

Electrical Conductivity: [ ] 16 m 10  −Ω=ε
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Fig. 1: Equivalent v. Mieses stress (in relative units of 0TE L∆α ) vs. time θ  (θ  in

relative units of R/c) in the center of a solid target. In addition to the black curve, which is
for infinitely fast heating, also oscillations are shown for uniform heating over the
durations ).of unitsin  ( 10 and 2  ,1 ,5.0    00 cRθθ =
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Fig. 2: Equivalent v. Mieses stress vs. time at the outer radius of a solid target. The same
units as in Fig. 1 apply.
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Fig. 3: Pressure (in relative units of κα 0V T∆ ) vs. radial position  ξ  (in units of R) in a

liquid target at different times θ  (in relative units of R/c) of  0, 0.3, 0.6, 0.9 and 1.2.
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Fig. 4: Material velocity (in relative units of cTV 0∆α ) vs. radial position  ξ  (in units

of R) in a liquid target at different times θ  of  0, 0.3, 0.6, 0.9 and 1.2 (θ  in units of R/c).
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Fig. 5: Pressure (in relative units of κα 0V T∆ ) vs. time θ  (θ  in units of R/c) in the

center of the liquid target. In addition to infinitely fast heating with ,00 =θ  oscillations

are shown for slower heating over the durations  2 and 1 ,5.00 =θ (in relative units of

R/c).
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Fig. 6: Material velocity (in relative units of cT0V∆α ) vs. time θ  (in units of R/c) at the

outer radius of the liquid target. In addition to infinitely fast heating with
,00 =θ oscillations are shown for slower heating over the durations  2 and 1 ,5.00 =θ

( 0θ  in units of R/c).


