

MERIT beam spot size

(Saturations & projections)

Goran Skoro

13 August 2008

Goran Skoro The University

We have 3 beam 'cameras' -> 3 images for every beam pulse

Camera Camera Camera

^{*} Projection for X is $P(x) = \frac{1}{n_y} \sum_{i=1}^{n_y} z(x, y_i)$, similarly for Y.

** Shadow for X is $S(x) = \max[z(x, y_i)], (i = 1, n_y),$ similarly for Y.

Fitting of projections result

Similar results have been obtained by fitting of shadows.

Objections:

- 1) Saturation is a problem ('we could have many sigmas hidden here')
- 2) Shadows approach looks problematic for the highest beam intensities (only a few points left to fit tails)

If we assume that the 'light intensity' (from the screens) is proportional to beam intensity (before we reach a 'saturation intensity') we can, at least, to estimate the correction factor when fitting the projections.

This is not a problem (intensity is below the saturation level) and a projections approach will give us correct value of beam width(s)

This is a problem (intensity is 10x higher than the saturation level)

Simulation: Saturation effects

But, what will happen if we try to fit corresponding projections by using gaussian(s)?

(1)

Goran Skoro The University Of Sheffield.

$\sigma_{x} = 3 \text{ mm}$ $\sigma_{y} = 1.5 \text{ mm}$

Simulation: Saturation effects

- Previous slide is for sigma_x = sigma_y
- In our case, expected value of sigma_x/sigma_y ~ 2
- By plotting sigma_output/sigma_input as a function of intensity we can estimate a correction function

'Symmetry' between x and y is broken

Intensity / 'Saturation intensity'

Next step: To find a value of 'saturation intensity' in our case

X (mm)

X (mm)

-20

X (mm)

Results: 'Correction' function

Results: Beam size vs beam intensity (after correction)

Dots: from beam monitors data

Lines: from beam optics calculations

Results: Appendix

Beam position on target (horizontal scan)

EXP

Taken online (estimated by the eye from the screen data)

FIT

Calculated by using:

- 1) the fitted beam positions for Camera454 and Camera484 (see Slide 4, for example);
- 2) the Camera454, Camera484 and target positions