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Emittance simulations

Introduction

Emittance calculation

Σ = cov(x ,px , y ,py , t ,−E); ε6D = c
m3

√
det Σ;

ΣT = cov(x ,px , y ,py ); εT = 1
m

√√
det ΣT ;

ΣL = cov(t ,−E); εL = c
m

√
det ΣL;

λ1, λ2, λ3 – eigen-values of JΣ, where J is a block diagonal

matrix made up of three blocks J2 =

(
0 1
−1 0

)
.

|λ1|, |λ2|, |λ3| – eigen-emittances.
I compare rms emittances with eigen-emittances for linear
and nonlinear cases for drift and MICE Step IV.
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Emittance simulations

Beam

Beam parameters

Pref = 200 MeV/c;
gaussian beam,
normalized longitudinal emittance 90 mm;
normalized transverse emittance 6 mm;
σx = σy = 37 mm;
σpx = σpy = 17 MeV/c;
σpz = 29 MeV/c;
σt = 1.25 ns;
no dispersion.

Phase space is large, paraxial appoximation will not work.
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Emittance simulations

Beam

Linear vs nonlinear

Our system can be described in terms of the flow f (propagator,
transfer map): ~zf = f (~zi ), where ~zi – initial state of the system, ~zf –
final state (e.g. ~z = (x , x ′, y , y ′) for two dimensions).

Most of the time we don’t know the analytic expression for f , and we
use numerical methods to obtain some approximation of f .

Linear approximation: ~zf = M~zi , where M is a matrix, (e.g., for one

dimension (x , x ′)f =

(
m11 m12
m21 m22

)
(x , x ′)T

i , where all mij are

constants).

Nonlinear approximation: there are different approaches to
approximating f , in COSY that I used for calculations f is approximated
by its Taylor polynomial of order n: ~zf = Tn(f )(~zi ).
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Emittance simulations

Drift

3.3 m drift
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Emittance simulations

Drift

Drift, 6D emittance, linear vs nonlinear
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6D emittance for a 3.3 m drift, linear case
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6D emittance for a 3.3 m drift, nonlinear case
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ecalc9 uses: ε6D = c
m3

√
det Σ.

Equivalent to: c
m3 |λ1||λ2||λ3| in terms of eigen-emittances.

Left: linear case; right: nonlinear case.

Nonlinear case: emittance approximation based on second moment
matrix Σ shows significant growth, while the phase space volume stays
constant.
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Emittance simulations

Drift

Drift, trans. emittance, linear vs nonlinear
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Transverse emittance for a 3.3 m drift, linear case
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Transverse emittance for a 3.3 m drift, nonlinear case
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ecalc9 uses: εT = 1
m

√√
det ΣT .

Equivalent to: 1
m

√
|λ1||λ2| in terms of eigen-emittances.

Left: linear case; right: nonlinear case.

Two transverse eigen-emittances are different, but their geometric average is equivalent
to the transverse emittance calculated by ecalc9.

Nonlinear case: emittance growth, both for εT and |λ1|, |λ2|.
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Emittance simulations

Drift

Drift, long. emittance, linear vs nonlinear

0 0.5 1 1.5 2 2.5 3
88.8

88.9

89

89.1

89.2

89.3

89.4

z [m]

c m

√
d
et

Σ
L
,

c m
|λ

3
|

Longitudinal emittance for a 3.3 m drift, linear case
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Longitudinal emittance for a 3.3 m drift, nonlinear case
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ecalc9 uses: εL = c
m

√
det ΣL.

Equivalent to: c
m |λ3| in terms of eigen-emittances.

Left: linear case; right: nonlinear case.

There is a slight difference due to the fact that εL uses only the part describing the
longitudinal motion.

Nonlinear case: emittance growth.
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Emittance simulations

MICE Step IV geometry

MICE Step IV geometry,
no material
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Emittance simulations

MICE Step IV geometry

MICE Step IV magnetic field profile

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

z [m]

B
 [T

]

Magnetic field comparison

 

 
g4beamline
COSY Infinity



11

Emittance simulations

MICE Step IV geometry

MICE, 6D emittance, linear vs nonlinear
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6D emittance for MICE, linear case
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6D emittance for MICE, nonlinear case
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ecalc9 uses: ε6D = c
m3

√
det Σ.

Equivalent to: c
m3 |λ1||λ2||λ3| in terms of eigen-emittances.

Left: linear case; right: nonlinear case.

Nonlinear case: emittance approximation based on second moment
matrix Σ shows significant growth, while the phase space volume stays
constant.
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Emittance simulations

MICE Step IV geometry

MICE, trans. emittance, linear vs nonlinear
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Transverse emittance for MICE, linear case
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Transverse emittance for MICE, nonlinear case
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ecalc9 uses: εT = 1
m

√√
det ΣT .

Equivalent to: 1
m

√
|λ1||λ2| in terms of eigen-emittances.

Left: linear case; right: nonlinear case.

Two transverse eigen-emittances are different, but their geometric average is equivalent
to the transverse emittance calculated by ecalc9.

Nonlinear case: emittance growth, both for εT and |λ1|, |λ2|.
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Emittance simulations

MICE Step IV geometry

MICE, long. emittance, linear vs nonlinear
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Longitudinal emittance for a 3.3 m drift, linear case
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Longitudinal emittance for a 3.3 m drift, nonlinear case
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ecalc9 uses: εL = c
m

√
det ΣL.

Equivalent to: c
m |λ3| in terms of eigen-emittances.

Left: linear case; right: nonlinear case.

There is a slight difference due to the fact that εL uses only the part describing the
longitudinal motion.

Nonlinear case: emittance growth.
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Emittance simulations

MICE Step IV geometry

Phase space volume change in the
nonlinear case (MICE Step IV)
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Phase space volume change can be
determined by det(Jac(M)).

Calculation for the nonlinear case yields
that the determinant is equal to 1
everywhere in the area of interest (based
on the Taylor expansion of order 9).

Picture shows the deviation of the
determinant from 1 (O(10−11).

Phase space volume is constant.
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Emittance simulations

Summary

Other ways to calculate emittance?

Calculate phase space volume using Voronoi tesselation
algorithms? – resource hungry
Use det(Jac(M))? – how to include absorber material
Higher moments?

Do we need “nonlinear emittance”?
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