Pavel Snopok University of California Riverside

June 22, 2010

Outline

TODOs from last meeting

TODO:

- Understand & resolve the issue with RF synchronization (quick question: is there a way to trace in ICOOL what RF phase has been set to?).
- Find a way to do it in a (semi-)automatic fashion for future simulations. G4Beamline built-in "tune" command can only tweak RF gradient.
- Achieve proper phase rotation.
- Compare outcome to ICOOL.
- Use happily ever after (hopefully).

Phase rotation issue

- Thanks for your detailed message on how to run RF diagnostics in ICOOL.
- Comparing the ICOOL and G4beamline logfiles revealed some discrepancies causing problems in the rotator.

Phase rotation issue

RF diagnostics in the phase rotator (excerpt)

REG	Z	FREQ	GRAD	TREFMN	1	T2REFMN	
225	112.98	231.67	12.000	0.4136	53E-06	0.457	701E-06
229	113.73	230.19	12.000	0.4163	37E-06	0.460	03E-06
233	114.48	228.78	12.000	0.4191	2E-06	0.463	305E-06
237	115.23	227.42	12.000	0.4218	37E-06	0.466	506E-06
241	115.98	226.13	12.000	0.4246	51E-06	0.469	906E-06
245	116.73	224.90	12.000	0.4273	86E-06	0.472	205E-06
249	117.48	223.72	12.000	0.4301	0E-06	0.475	503E-06
253	118.23	222.59	12.000	0.4328	35E-06	0.478	300E-06
Mom.	change,	233.5 Me	eV/c:	Mom.	change,	154	MeV/c:
REG	Z	Ρz		REG	Ζ	Ρz	
227	113.35	233.500		227	113.35	155.	.495
231	114.10	233.500		231	114.10	156.	.986
235	114.85	233.500		235	114.85	158.	.472
239	115.60	233.500		239	115.60	159.	.955
243	116.35	233.500		243	116.35	161.	.433
247	117.10	233.500		247	117.10	162.	.907
251	117.85	233.500		251	117.85	164.	. 377
255	118.60	233.500		255	118.60	165.	.843

Phase rotation issue

Rotator RF frequency calculation issue

• Using the time of flight formula $t_{ref\{1,2\}} = \frac{z}{v_{ref\{1,2\}}}$,

 $v_{ref\{1,2\}} = \frac{p_{ref\{1,2\}}}{\sqrt{p_{ref\{1,2\}}^2 + m^2}}$ worked ok in the buncher, since the

momenta of both reference particles were constant.

- In the phase rotator the first reference particle momentum stays constant, while the second one increases from 154 MeV/c to 233.5 MeV/c, so the formula has to take that change into account.
- In ICOOL this is done naturally, since the lattice is laid out cell by cell, the reference particles are tracked along, and the RF frequency is calculated based on the current values of *p_{ref}* and *t_{ref}* (RF model 10).
- To my knowledge there is no similar mechanism in G4beamline, in other words, I cannot track my reference particle for one cell to obtain the new value of p_{ref} for the next cell.

Phase rotation issue

Possible solutions

- Derive and use an analytical expression taking into account the fact that p_{ref} is changing (estimate energy gain per RF).
- Import RF frequency data from ICOOL. I use it for the time being as a temporary solution.
 - Could we keep it as a permanent solution? Depends on what we want from G4beamline:
 - If G4beamline is only used for cross-checking purposes this solution could be sufficient.
 - If we want to use G4beamline for full-blown simulations and dynamics optimization—need a self-consistent approach.

Simulation results

Simulation results

Numerical results

Region	Particle count
Initial	9392 π (94%)
distribution	331 μ (3.3%)
after	236 <i>π</i>
Rotator	7154 μ
after	0 π
Cooler	3621 μ

- Initial distribution of 10000 particles is used for tracking.
- Only 50% of muons survive the cooling channel (starting from the end of rotator).
- Is that a common particle loss for the cooling channel?

After rotator

10/14

After rotator, zoom

After cooler

Particle distribution after cooler

Simulation results

After cooler, zoom

Summary

Summary

- The G4beamline deck for the baseline lattice is working!
- The issue with phase rotation has been "fixed".
- One source of concern: after cooling the muons tend to have momenta around 280 MeV/c.
- TODO: get feedback on implementing a more permanent solution for bunch rotation ("model 10 issue").
- TODO: discuss G4beamline simulation plans.

