

Defining a new baseline for beam cooling for a muon accelerator front-end

Diktys Stratakis

Physics Department
Brookhaven National Laboratory

Front-End Phone Meeting July 17, 2012

Outline

- Review existing baseline with:
 - Engineer requirements for buncher & rotator
 - Engineer requirements for cooler
- Compare this baseline with a bucked coiled front-end with:
 - Bucked coils on rotator
 - Bucked coils on cooler (schemes with longitudinal bucked coils and radial bucked coils)
- New: After optimizations the bucked coil scheme underperform only 13% instead of 20% (reported 15 days ago).

New Buncher/ Rotator for Baseline

- Simulations suggest that it is safe to increase the gap up to g=0.50 m without loss of performance or presence of stop bands
- Conclusion: Keep g=0.431 m (see engineers report)

New cooler for Baseline (empty cell)

- There is a loss of ~5% if empty cell is after 5 cavities
- Conclusion: Keep a group of five cavities

Bucked Coils for Phase-Rotator

 There is a loss of ~3-5% when adding bucked coils on phase rotator. Not a big problem!

Bucked Coils for cooler: Two schemes

6

ICOOL simulation (1)

- RBC performs better than LBC
- After optimization RBC gives 13% less muon per protons than baseline

ICOOL simulation (2)

Cooling performance of BC schemes is comparable to baseline

Summary

For the baseline:

- It safe to increase the gap between the coils in the buncher & rotator as desired by the engineering studies. 'Safe' means same good cooling and a high muon/p rate.
- It is also safe to increase the cooler cell length up to 0.86 m
- It is better if the gap is placed every 5 or 7 cavities instead of 3
- Performance goes down by 5-7%
- Bucked Coils (BC) were applied in both rotator and cooler.
- · Two schemes tested on cooler, but RBC looks better so far
- With bucked coils and after optimization the losses are ~13% which looks more promising