

Thomas Tsang

- tight environment
- high radiation area
- non-serviceable area
- passive components
- optics only, no active electronics
- back illuminated with a single fiber laser pulsed laser
- transmit image through flexible fiber bundle

Optical Diagnostics

Thomas Tsang

Instrumentation Division Ultrafast Laser Laboratory

Flexible Panel Construction (without housing)

Туре	Part #	w	L	с	т	Active Area	Qty 1	Qty 2-4	Qty 5-9	Qty 10+
Rugged	004081	3.00	4.50	36	.500	2×2	\$375	\$358	\$327	\$314
Rugged	004083	5.00	7.00	36	.500	4×4	\$456	\$430	\$398	\$349
Rugged	004084	5.00	9.00	36	.500	4×6	\$498	\$480	\$443	\$401
Flexible	003102	2.00	2.00	36	.225	2×2	\$225	\$209	\$164	\$132
Flexible	003103	3.00	3.00	36	.225	3×3	\$262	\$246	\$184	\$149
Flexible	003104	4.00	4.00	36	.225	4×4	\$299	\$275	\$219	\$181
Flexible	003105	4.00	6.00	36	.225	4×6	\$334	\$319	\$235	\$195
Flexible	003106	7.00	8.00	36	.170	7×8	\$412	\$389	\$288	\$239

Notes: All Dimensions in inches, Prices subject to change without notice.

Optical Diagnostics

Thomas Tsang

Optical Diagnostics

BROOKHAVEN NATIONAL LABORATORY Instrumentation Division Ultrafast Laser Laboratory

Thomas Tsang

E951 – Hg jet results

Instrumentation Division Ultrafast Laser Laboratory

The maximum dispersal velocity of the mercury drops is \sim 10 m/s

E951 – more Hg jet results

Instrumentation Division Ultrafast Laser Laboratory

- No evident of back propagating to the nozzle
- Hg break up ~40 us after proton impact

E951 – more Hg jet results

Instrumentation Division Ultrafast Laser Laboratory

E951 Mercury jet run 4-27-2001

file name: jet-4-27-01-14-movie.gif

grid size: 1 cm field of view: 4.2 cm x 4.2 cm

frame rate: 100 microsecond exposure time: 150 ns

proton energy: 24 GeV # of particles: 1.0 TP

E951 Mercury jet run 4-27-2001

file name: jet-4-27-01-12-movie.gif

grid size: 1 cm field of view: 4.2 cm x 4.2 cm

frame rate: 100 microsecond exposure time: 150 ns

proton energy: 24 GeV # of particles: 2.6 TP

E951 Mercury jet run 4-27-2001

file name: jet-4-27-01-13-movie.gif

grid size: 1 cm field of view: 4.2 cm x 4.2 cm

frame rate: 100 microsecond exposure time: 150 ns

proton energy: 24 GeV # of particles: 3.7 TP

1 TP

2.6 TP

3.7 TP

• Hg droplets velocities increase roughly with proton beam energy