Adrian Fabich

High Power Proton Beam Shocks and Magnetohydrodynamics of a Mercury Jet Target for a Neutrino Factory (thesis)

Chapter 4: MHD

Contents of Thesis

- Introduction
 - application of high power proton beams
 - Neutrino factory
 - layouts for high power beam targets
- Proton induced shocks
 - See previous presentations
- MHD
 - Setup (see also http://puhep1.princeton.edu/mumu/target/, Aug02)

– Behaviour (v, \emptyset , α , smoothing) of jet as f(B) =

Grenoble High Magnetic Field laboratory (setup)

- mercury jet
- d_{nozzle}=4 mm
- colinear/inclined injection
- $v_{jet} \le 12 \text{ m/s}$
- B-field up to 20 Tesla

Setup Arrangement

Jet traverses B_{max}

This qualitative behaviour can be observed in all events.

Numerical Results

BUT ...

- Effect is somehow correlated with position of valve in magnetic field
- WIDTH is NOT a function along jet

 This means already at nozzle the jet is smaller and does not decrease with drift
- Stabilizing did not occur for turbulent simulation with "short" nozzle
- Numerical results larger than MHD of free jet

Turbulent Jet

- Using "short" nozzle
 - Magnetic field could NOT stabilize the jet

We need SPACE to put in

- mercury jet (Ø 1cm, v=20m/s)
- mercury loop/reservoir (dead end bore)
- read-out

$\Rightarrow \emptyset_{\text{hybrid magnet}} = 2 \times \emptyset_{\text{used M9}}$

What kind of read-out?

- optical
- radar
- laser vibrometer

Summary

Major MHD effects occur in confined circuit – Can be overcome by resizing mercury supply

- Who is able to make a nominal jet???
 Needs money and MAN POWER
 - otherwise it is useless to ask for further magnet time