Calculations of the radiological environment for handling of ISOLDE targets

HSE Occupational Health & Safety and Environmental Protection Unit Joachim Vollaire

Outline

- Short description of ISOLDE
- ISOLDE target handling system (replacement project)
- Results of FLUKA calculations
- Conclusions and perspectives

HSE

2

General layout of the ISOLDE facility

Current target handling system

- Two robots mounted on rails (located in a trench)
- Removal of targets and transportation to intermediate storage shelves and installation of the new target
- ~30 target exchanges performed per year

4th High Power Targetry Workshop, Malmö, May 2-6 2011

J. Vollaire

Target storage and hot cell project

- Used targets transferred to a temporary storage area prior to maintenance activities during the shutdown
- Project to build a hot cell for target dismantling and conditioning prior to final storage.

4th High Power Targetry Workshop, Malmö, May 2-6 2011

Robot replacement project

- Current system arriving at the end of its lifetime and different concepts being investigated
 - One autonomous Automated Guided Vehicle (AGV) parked outside the target area during operation
 - Current concept (2 robots on rails) with some improvements
- Both approach have pros and cons: maintenance aspects, reliability, recovery procedure and flexibility have to be taken into account in the choice of the two concepts
- Monte-Carlo simulations (FLUKA) needed to assess the radiation environment in which the robot will evolve (radiation hardness, recovery scenario...)

Automated Guided Vehicle concept

- Automated Guided Vehicle (AGV):
 - Fully autonomous vehicle
 - Integrated robot arm
 - Robot mounted vision system for precise robot control

Radiation impact and constraints (AGV)

Robot exposed to residual dose rate during target exchange:

Y[cm]

Dose to vision system Recovery

- IxIO¹⁹ protons over 220 h of operation
- UC target considered
- Different cooling times considered
- Cooling before target exchange = 3 days

Example of residual dose rate map (72 h CT)

- Most of the beam absorbed in the beam dump (shielded)
- Several Sv/h on contact with the target (after 72 h of decay)
- No access above 100 mSv/h

Dose to the vision/positioning system

- Vision system used for accurate robot positioning directly linked to system performance and reliability
- Envisaged CCD camera performance must be tested in similar radiation environment (illuminated exposure)
- To consider instantaneous and integrated dose effects

12

Camera calibration

4th High Power Targetry Workshop, Malmö, May 2-6 2011

J. Vollaire

Benefits from the shielded transport box

- Objective is to minimize the time during which used targets are handled with the robot gripper
- Transport box can be disconnected from AGV in case of failure

13

Calculations for the transport box

Using a two steps approach where radioactive nuclei are "stored" in the first step and decay products transported in a different geometry during the second step

- Recovery could be complicated in case of failure (risk for operation - only one robot available)
- Dose to CCD camera for positioning system critical
- System is becoming quite complex and massive....

CERN

I. Vollaire

Alternative choice

- Similar system as the current one, except that the rail is mounted on the ceiling (avoiding trenches on the floor)
- Parked in the area during operation
- Controls located outside
- Benefits from current technology
- Sensitivity to radiation damage ?
- Calculation of radiation environment (cumulative effects)

16

J. Vollaire

Calculation for the most exposed robot

- Scoring the I MeV neutron equivalent fluence (probability of displacement damage in Si due to NIEL)
- Scoring of dose (deposited energy) for organic components
- Results used for the technical specification

Consideration for radiation hardness

- Integrated dose for organic material of the order of kGy per year (calculations results in agreement with TLD passive dosimetry measurements). Important for festoon cables.
- I MeV neutron equivalent fluence considering planned accelerator upgrade of the order of 10¹⁴ n/cm⁻² per year
- Recommended to minimize electronic components inside the primary area (better for maintenance purpose as well)
- No issue with Single Event Upset as robot is off during beam operation

Summary and Conclusions

- FLUKA calculations of the residual dose rate around ISOLDE targets performed in the frame of the ISOLDE robot replacement project
- AGV option seems to be complicated (vision/AGS/robot) and not optimal from a reliability point of view (one robot + long cooling time for recovery)
- Similar concept as the one used today seems to be preferred with some improvements
- FLUKA calculations very useful for other target handling aspects (hot cell project for used targets dismantling, isotope inventory for risk analysis....)

Aknowledgements

R. Luis and Y. Romanets for providing the FLUKA geometry used for those calculations

HSE

