

Beta Beams

Elena Wildner, CERN

NuFact09, July 20-25, 2009 — Illinois Institute of Technology — Chicago

Outline

- Beta Beam Concepts
- A Beta Beam Scenario
- Ion Production
- Other challenges
- Conclusion

Beta-beams, recall

Aim: production of (anti-)neutrino beams from the beta decay of radioactive ions circulating in a storage ring

Similar concept to the neutrino factory, but parent particle is a betaactive isotope instead of a muon.

Beta-decay at rest

- v–spectrum well known from the electron spectrum
- Reaction energy Q typically of a few MeV
- Accelerate parent ion to relativistic γ_{max}
 - Boosted neutrino energy spectrum: $E_v \le 2\gamma Q$
 - Forward focusing of neutrinos: $\theta \le 1/\gamma$
- Pure electron (anti-)neutrino beam!
 - Depending on β^+ or β^- decay we get a neutrino or anti-neutrino
 - Two different parent ions for neutrino and anti-neutrino beams
- Physics applications of a beta-beam
 - Primarily neutrino oscillation physics and CP-violation
 - Cross-sections of neutrino-nucleus interaction

Choice of radioactive ion species

- Beta-active isotopes
 - Production rates
 - Life time
 - Dangerous rest products
 - Reactivity (Noble gases are good)
- Reasonable lifetime at rest
 - If too short: decay during acceleration
 - If too long: low neutrino production
 - Optimum life time given by acceleration scenario
 - In the order of a second
- Low Z preferred

A MARK OF A MARKAN AND A MARKAN A

- Minimize ratio of accelerated mass/charges per neutrino produced
- One ion produces one neutrino.
- Reduce space charge problems

Isotope	<mark>A/Z</mark>	T ½ (s)	Qp g.s to g.s	Q _p eff	E ₀ av (MeV)	<mark>E_v av</mark> (MeV)	lons/bur	ich Deca rate	y	rate / E _v (s ⁻¹)	av						
°He ⁸ He	3.0 4.0	0.80 0.11	(MeV) 3.5 10.7	(MeV) 3.5 9.1	1.57 4.35	1.94 4.80	5·10 ¹² 5·10 ¹²	Isotope	<mark>A/Z</mark>	T ½ (s)	<mark>Q₀</mark> g.s. to g.s. (MeV)	Q ₆ eff (MeV)	E₀ av (MeV)	E _v av (MeV)	Ions/bunch	Decay rate (s ⁻¹)	rate / E _{v av} (s ⁻¹)
⁸ Li ⁹ Li	2.7 3.0	0.83	16.0 13.6	13.0 11.9	6.24 5.73	6.72 6.20	3·10 ¹² 3·10 ¹²	⁸ B ¹⁰ C ¹⁴ C	1.6	0.77 19.3	17.0 2.6	13.9 1.9	6.55 0.81	7.37 1.08	$2 \cdot 10^{12}$ $2 \cdot 10^{12}$ $1 \cdot 10^{12}$	2·10 ¹⁰ 6·10 ⁸	2·10 ⁹ 6·10 ⁸
¹⁵ C ¹⁶ C	2.8 2.5 2.7	2.44 0.74	9.8 8.0	9.8 6.4 4.5	4.65 2.87 2.05	3.55 2.46	$2 \cdot 10^{12}$ $2 \cdot 10^{12}$ $2 \cdot 10^{12}$	¹⁵ O ¹⁸ Ne	1.8 1.9 1.8	122. 1.67	4.1 1.7 3.3	1.8 1.7 3.0	0.78 0.74 1.50	1.05 1.00 1.52	$1 \cdot 10^{12}$ $1 \cdot 10^{12}$ $1 \cdot 10^{12}$	7·10 ⁷ 4·10 ⁹	7·10 ⁷ 3·10 ⁹
¹⁶ N ¹⁷ N ¹⁸ N22	2.3 2.4 /076/	7.13 4.17 09.64	10.4 8.7 13.9	5.9 3.8 8.0	4.59 1.71 5.33	1.33 2.10 2.67	$1 \cdot 10^{12}$ $1 \cdot 10^{12}$ $1 \cdot 10^{12}$	¹⁹ Ne ²¹ Na ³³ - 2-10	1.9 1.9	17.3 22.4	2.2 2.5	2.2 2.5 Eleña W	0.96 1.10 Udbēr	1.25 1.41	1·10 ¹² 9·10 ¹¹	4.10 ⁸ 3.10 ⁸	3·10 ⁸ 2·10 ⁸

6He and 18Ne

8Li and 8B

The EURISOL scenario^(*) boundaries

- Based on CERN boundaries
- Ion choice: ⁶He and ¹⁸Ne
- Based on existing technology and machines
 - Ion production through ISOL technique
 - Bunching and first acceleration: ECR, linac
 - Rapid cycling synchrotron
 - Use of existing machines: PS and SPS
- Relativistic gamma=100 for both ions
 - SPS allows maximum of 150 (⁶He) or 250 (¹⁸Ne)
 - Gamma choice optimized for physics reach
- Opportunity to share a Mton Water Cherenkov detector with a CERN super-beam, proton decay studies and a neutrino observatory

Achieve an annual neutrino rate of
 2.9*10¹⁸ anti-neutrinos from ⁶He

- 1.1 10¹⁸ neutrinos from ¹⁸Ne
- The EURISOL scenario will serve as reference for further studies and developments: Within Eurov we will study ⁸Li and ⁸B
- (*) FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395)

top-down approach

Some scaling

- Accelerators can accelerate ions up to Z/A × the proton energy.
- $L \sim E_{\nu} / \Delta m^2 \sim \gamma Q$, Flux $\sim L^{-2} =>$ Flux $\sim Q^{-2}$
- Cross section ~ E_{ν} ~ γQ
- Merit factor for an experiment at the atmospheric oscillation maximum: $M = \gamma/Q$
- Decay ring length scales ~ γ (ion lifetime)

ECR, Linac, RCS, Decay Ring (Nufact08)

Intensity evolution during acceleration

Cycle optimized for neutrino rate towards the detector

30% of first ⁶He bunch injected are reaching decay ring Overall only 50% (⁶He) and 80% (¹⁸Ne) reach decay ring

Normalization Single bunch intensity to maximum/bunch Total intensity to total number accumulated in RCS

Radioprotection

	Residual Ambient Dose Equivalent Rate at 1 m distance from the beam line (mSv h ⁻¹)							
		RCS (quad - ¹⁸ Ne)	PS (dip - ⁶ He)	SPS	DR (arc - ¹⁸ Ne)			
	1 hour	15	10	-	5.4			
NC	day week			V -	Stôpf	ber		

Annual Effective Dose to the Reference Population (μ Sv)							
RCS	RCS PS SPS DR						
0.67	0.64	-	5.6 (only decay losses)				

Stefania Trovati, Matteo Magistris, CERN

Activation and coil damage in the PS

The coils could support 60 years operation with a EURISOL type beta-beam

Particle turnover in decay ring

Momentum collimation (study ongoing):

~5*10¹² ⁶He ions to be collimated per cycle Decay: ~5*10¹² ⁶Li ions to be removed per cycle per meter

Duty factor and Cavities for He/Ne

10¹⁴ ions, 2% !!!

20 bunches, 10 ns long, distance 23*4 nanosseconds filling 1/11 of the Decay Ring, repeated every 23 microseconds

Erk Jensen, CERN

- Not conclusive yet only first ideas more work is needed!
- The heavy transient beam loading is unprecedented.
- Since there is no net energy transfer to the beam, the problem might be solved using a linear phase modulation in the absence of the beam, mimicking detuning – this could reduce gap transients.
- A high Q cavity (S.C.?) would be preferable.

Open Midplane Dipole for Decay Ring

Cos20 design open midplane magnet

Manageable (7 T operational) with Nb -Ti at 1.9 K Aluminum spacers possible on midplane to retain forces: gives transparency to the decay products Special cooling and radiation dumps may be needed inside yoke.

J. Bruer, E. Todesco, CERN

Open mid-plane Quadrupole

Acknowledgments (magnet design): F Borgnolutti, E. Todesco (CERN)

Open mid-plane Quadrupole

Acknowledgments (magnet design): F Borgnolutti, E. Todesco (CERN)

Options for production

- ISOL method at 1-2 GeV (200 kW)
 - >1 10¹³ ⁶He per second
 - <8 10^{11 18}Ne per second
 - Studied within EURISOL
- Direct production
 - >1 10¹³ (?) ⁶He per second
 - 1 10¹³ ¹⁸Ne per second
 - Studied at LLN, Soreq, WI and GANIL
- Production ring
 - 10¹⁴ (?) ⁸Li
 - >10¹³ (?) ⁸B
 - Will be studied Within EUROv

N.B. Nuclear Physics has limited interest in those elements => Production rates not pushed! Try to get ressources to persue ideas how to produce Ne!

Aimed: He 2.9 10¹⁸ (2.0 10¹³/s) Ne 1.1 10¹⁸ (2.0 10¹³/s)

Courtesy M. Lindroos

Options for production

- ISOL method at 1-2 GeV (200 kW)
 - >1 10¹³ ⁶He per second
 - <8 10¹¹ ¹⁸Ne per second
 - Studied within EURISOL
- Direct production
 - >1 10¹³ (?) ⁶He per second
 - 1 10¹³ ¹⁸Ne per second
 - Studied at LLN, Soreq, WI and GANIL
- Production ring
 - 10¹⁴ (?) ⁸Li
 - >10¹³ (?) ⁸B
 - Will be studied Within EUROv

N.B. Nuclear Physics has limited interest in those elements => Production rates not pushed! Try to get ressources to persue ideas to produce Ne!

Aimed: He 2.9 10¹⁸ (2.0 10¹³/s) Ne 1.1 10¹⁸ (2.0 10¹³/s)

Courtesy M. Lindroos

⁶He (ISOL)

Spallation neutrons ⁶He and ⁴He ^gBe Transfer line to lon source Converter technology: (J. Nolen, NPA 701 (2002) 312c) T. Stora, N. Thollieres, CERN high-energy protons: Spallation target: a) water-cooled W b) llauid Pb

- ISOL target (BeO) in concentric cylinder
- Converter technology preferred to direct irradiation (heat transfer and efficient cooling allows higher power compared to insulating BeO).
- ⁶He production rate is $\sim 2x10^{13}$ ions/s (dc) for ~ 200 kW on target.

Recent measurements at ISOLDE

Options for production

Courtesy M. Lindroos

- ISOL method at 1-2 GeV (200 kW)
 - >1 10¹³ ⁶He per second
 - <8 10¹¹ ¹⁸Ne per second
 - Studied within EURISOL
- Direct production
 - >1 10¹³ (?) ⁶He per second
 - 1 10¹³ ¹⁸Ne per second
 - Studied at LLN, Soreq, WI and GANIL
- Production ring
 - 10¹⁴ (?) ⁸Li
 - >10¹³ (?) ⁸B
 - Will be studied Within EUROv

N.B. Nuclear Physics has limited interest in those elements => Production rates not pushed! Try to get ressources to persue ideas to produce Ne!

Aimed: He 2.9 10¹⁸ (2.0 10¹³/s) Ne 1.1 10¹⁸ (2.0 10¹³/s)

¹⁸Ne (Direct Production)

Geometric scaling

- Producing 10¹³ ¹⁸Ne could be possible with a beam power (at low energy) of 2 MW (or some 130 mA ³He beam on MgO).
- To keep the power density similar to LLN (today) the target has to be 60 cm in diameter.
- To be studied:
 - Extraction efficiency
 - Optimum energy
 - Cooling of target unit
 - High intensity and low energy ion linac
 - High intensity ion source

S. Mitrofanov and M. Loislet at CRC, Belgium

T. Stora, CERN, 2009 -> ?

⁶He (Two Stage ISOL)

- Studied ⁹Be(n, α)⁶He, ¹¹B(n, α)⁸Li and ⁹Be(n,2n)⁸Be production
- For a 2 mA, 40 MeV deuteron beam, the upper limit for the ⁶He production rate via the two stage targets setup is $\sim 6 \cdot 10^{13}$ atoms per second.
- Interesting also for ⁸Li

T.Y.Hirsh, D.Berkovits, M.Hass (Soreq, Weizmann I.)

It seems we can produce plenty of antineutrinos...

Options for production

- ISOL method at 1-2 GeV (200 kW)
 - >1 10¹³ ⁶He per second
 - <8 10^{11 18}Ne per second
 - Studied within EURISOL
- Direct production
 - >1 10¹³ (?) ⁶He per second
 - 1 10¹³ ¹⁸Ne per second
 - Studied at LLN, Soreq, WI and GANIL
- Production ring

10¹⁴ (?) ⁸Li

>10¹³ (?) ⁸B Difficult Chemistry

Will be studied Within EUROv

Aimed: He 2.9 10¹⁸ (2.0 10¹³/s) Ne 1.1 10¹⁸ (2.0 10¹³/s)

Courtesy M. Lindroos

N.B. Nuclear Physics has limited interest in those elements => Production rates not pushed! Try to get ressources to persue ideas to produce Ne!

New approaches for ion production

"Beam cooling with ionisation losses" – C. Rubbia, A Ferrari, Y. Kadi and V. Vlachoudis in NIM A 568 (2006) 475–487

"Development of FFAG accelerators and their applications for intense secondary particle production", Y. Mori, NIM A562(2006)591

(*) FP7 "Design Studies" (Research Infrastructures) EUROnu (Grant agreement no.: 212372)

Beta Beam scenario EUROnu, FP7

The beta-beam in EURONU DS (I)

- The study will focus on production issues for ⁸Li and ⁸B
 - ⁸B is highly reactive and has never been produced as an ISOL beam
 - Production ring: enhanced direct production
 - Ring lattice design (CERN)
 - Cooling (CERN +)
 - Collection of the produced ions, release efficiencies and cross sections for the reactions (UCL, INFN, ANL)
 - Sources ECR (LPSC, GHMFL)
 - Supersonic Gas injector (PPPL +)
- CERN Complex
 - All machines to be simulated with B and Li (CERN, CEA)
 - PS2 presently under design (apertures!)
 - Multiple Charge State Linacs (P Ostroumov, ANL)

Associated partners in EURONU DS

Possible realization with one detector only (price) v_{μ} -beam:

SPL: $\langle E_v \rangle = 260 \text{ MeV}$ $L_{opt} = 134 \text{ km}$

CERN – Frejus: 130 km

 v_e -beam:

 γ = 150 Lopt = 130 km γ = 500 Lopt = 1000 km

s CERN – Frejus: 130 km DESY – Frejus: 960 km

3-Flavor Oscillation needs two significantly different baselines to disentangle CP and matter effects

The production Ring: Ion Source for Beta Beams

- 12m circumference
- mirror symmetrical structure
- 1.5T dipoles
- 5 quadrupole-families
- Dx = 0 in cavity-section
- best choice of Dx in target-section
 depends on wedge angle of the target

Simulations, Production Ring (ion source)

The production ring cooling: review

Mini-workshop Fermilab next week on Beta Beams, ionization cooling (David Neuffer)

Challenge: collection device

- A large proportion of beam particles (⁶Li) will be scattered into the collection device.
- Production of ⁸Li and ⁸B: ⁷Li(d,p) ⁸Li and ⁶Li(³He,n) ⁸B reactions using low energy and low intensity ~ 1nA beams of ⁶Li(4-15 MeV) and ⁷Li(10-25 MeV) hitting the deuteron or ³He target.

Collection Device, Schedule

- Semen Mitrofanov
- Marc Loiselet
- Thierry Delbar
- First beam runs November÷December'09 several two days runs
- Full-time beam tests January+February'10
- End of the summer'10 we hope we will finished with ⁸Li.

Terra Incognita:

"We have 1 years to discover how to produce ⁸B beam of necessary intensity

and 1.5 year to develop the production technique »

Cross section measurements at Laboratori Nazionali di Legnaro

M.Mezzetto (INFN-Pd) on behalf of INFN-LNL: M. Cinausero, G. De Angelis, G. Prete

First Experiment performed in July 2008

Inverse kinematic reaction:

⁷Li + Cd₂ target E=25 MeV Data reduction in progress Future: reduce contamination

How to get a 60 GHz Gyrotron and perform experiments?

Use any external resources possible (collaborate!!) ISTC project:

IAP Nizhny Novgorod (Plasma physics theory and experiments, gyrotron manufacturing)

LPSC in this programme will be responsible of the design and construction of various ECR ion sources with the help of LNCMI.

LNCMI has committed itself to the magnetic characterization (*i.e. a permanent room for experiments + electrical Power!!*)

Geert Rikken Director of the LNCMI

T. Lami

As the leader of one of the work packages in the EUROnu collaboration, the "Beta Beam" work package, for which CERN is the leading institute, I can only encourage the mentioned ISTC project. The ion source is one of the crucial parts for the success of the EUROnu beta beam project.

Estimated total cost of the project (US \$)	1 000 000
Requested from the ISTC	710 000
Other financial source 1: LPSC	290 000

Elena Wildner, CERN/BE/ABP Leader of the Beta Beam Workpackage (WP4), EUROnu

Serge Kox LPSC Director

Associates

- Weizmann Institue of Science, Revohot
 - Michael Hass
 - Partners: GANIL and Soreq
 - Collaboration with Aachen (exchange of students)
- Work Focus
 - produce light radioactive isotopes also for beta beams
 - secondary neutrons from an intense, 40 MeV d beam (6He and 8Lf) and direct production with 3He or 4He beams (18Ne).
 - Use of superconducting LINACs such as SARAF at Soreq (Israel) and the driver for SPIRAL-II (GANIL).
- Added Value
 - To produce strong beta beam ion candidates or production methods not in EUROnu

Courtesy Micha Hass

He/Ne & Li/B

Bottom-up Exit Intensities

	# 8B Ions	# 8Li Ions	# 18Ne Ions	# 6He Ions
Source rate	2. x 10 ¹³	2. × 10 ¹³	8.×1011	2. x 10 ¹³
ECR	5.6×1011	1.69×10^{12}	2.22×10^{10}	1.85×10^{12}
RCS inj	2.79×1011	8.4 x 10 ¹¹	1.11 × 10 ¹⁰	9.23 x 10 ¹¹
RCS	2.73×10^{11}	8.18×10 ¹¹	1.09×10^{10}	8.97 × 10 ¹¹
PS inj	4.18×10^{12}	1.14 x 10 ¹³	1.91 × 1011	1.2 × 1013
PS	3.84×10^{12}	1.×1013	1.82×10^{11}	1.03×10^{13}
SPS	3.75×1012	9.55 x 10 ¹²	1.8×1011	9.74 x 10 ¹²
Decay Ring	1.13×10^{14}	2.41×10^{14}	$3.13 \text{ x} 10^{12}$	$1.04 \text{ x} 10^{14}$

Courtesy Christian Hansen May 2009

	# v from 8B	# anti-v from 8Li	# v from 18Ne	♯ anti-γ from 6He
Annual Rate	3.75×10^{18}	7.16×10^{18}	4.64×10^{16}	3.14×10^{18}
Required Annual Rate	5.5×1018	1.45×10^{20}	1.1×10 ¹⁸	2.9×10 ¹⁹
	+ + Ve	- + Ve	t + Ve	- + Ve
8B6	ste	SBe+e	18F+0	6Li+e
5B- 4	SL1-	18Ne	6 <u>2</u> He	

No dutycycle

• With RF Barrier Bucket gymnastics the DR could maybe be used till full saturation (investigations ongoing)

 For the 6He and 18Ne ions however bunching was needed and merging allowed for only 15 and 20 injections respectively

Barrier Buckets, relaxed duty factor

See Poster Session today : Christian Hansen (CERN)

Gamma and decay-ring size, ⁶He

Gamma	Rigidity [Tm]	Ring length <u>T=5 T</u> f=0.36	Dipole Field <u>rho=300 m</u> Length=6885m
100	938	4916	3.1
150	1404	6421	4.7
200	1867	7917	6.2
350	3277	12474	10.9
500	4678	17000	15.6

Magnet R&D

Conclusions (i)

- The EURISOL beta-beam conceptual design report will be presented in second half of 2009
 - First coherent study of a beta-beam facility
 - Top down approach
 - 18Ne shortfall
 - Duty Factors are challenging:

Collimation and RF in Decay Ring

Conclusions (ii)

A beta-beam facility using ⁸Li and ⁸B (EUROnu)

- Experience from EURISOL
- Production issues (not to forget 18Ne)
- Optimize chain
- Revisit Duty Factors
- Apertures of PS2
- (Complete) simulation of beta beam complex
- Costing (add what is not in EUROnu)
- First results will come from Euronu DS (2008-2012)

Acknowledgements

FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395) and FP7 "Design Studies" (Research Infrastructures) EUROnu (Grant agreement no.: 212372)

Particular thanks to M. Benedikt, FP6 Leader M. Lindroos, and all contributing institutes and collaborators