Jet Flow Target Design, Analysis, and Experiment

M. W. Wendel and D. E. Winder, Oak Ridge National Laboratory

Cavitation damage erosion to mercury vessel inner wall occurs on the bulk side only, where the mean flow stagnates.

Two possible reasons why damage is less in the channel:

- Narrow gap in window channel reduces the cavitation damage
- Constant unidirectional flow in window channel suppresses damage

Original target design with mean-flow stagnation on center plane

Jet-flow concept with internal wall iet.

Design balances diverted wall jet flow and bulk side inlet flow.

Velocity field predicted by CFD shows the wall jet at the target midplane.

Computational fluid dynamics (CFD) predicts that the wall jet will persist across the target nose.

Flow-visualization experiment confirms the CFD-predicted wall jet.

Bubble streak lines with high-speed video image confirm the wall jet velocity on the target center-line is 2.5 m/s.

The SNS jet-flow target design, analysis and festing work was accomplished by current and former ORNL/ISDD staff of the Neutron Source and Engineering Analysis Group. Main contributors were: Ashraf Abdou, Ken Gawne, Patrick Geoghegan, Jim Janney, Saulius Kaminskas, Bernie Riemer, Peter Rosenblad, and Mark Wendel.