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In this section, we will detail the least squares method used to fit an ellipse
to given points in the plane. In analytic geometry, the ellipse is defined as a
collection of points (x,y) satisfying the following implicit equation [1]:

A:EQ—i—Bxy—i—C'yQ—i—]j?x—i—Ey:F,

where F' # 0 and B2—4AC < 0. To simplify the following analysis, we normalize
the above implicit form by dividing F' an both sides of the equality sign, which
reduces to

Az® + Bzy + Cy* + Dz + Ey = 1. (1)

Several new notations needs to be introduced to ease our discussion. For
two vectors s = (s, s2, .. .,sm)T and t = (ty,t9,... ,tm)T, the tensor product
between them are defined as

T
s®t= (Sltl, Sgtg, ey Smtm)
Assuming n measurements (x1,y1), (€2,Y2), -, (Tn,Yn) are given, we define
x = (z1,22,... ,mn)T and y = (y1,¥2,- - - ,yn)T, then the following cost function

needs to be minimized
C(B)=(XB-1)" (XB-1),

where X = [z ®@ z,x ® ¥,y ® y, x, y] is an-by-5 matrix, 8 = (4, B,C, D, E)T
consists of the parameters to be determined, and 1 is a n-dimensional column
vector with all 1’s. Expand the matrix multiplication, we get

CB)=pB"XTX3-21"X3 +n.
To minimize C (8) it is requested that

oC (B)

=28TXTX —21TX =
93 Ié} 0,

from which we get



ﬂ:(X?X)JXTL

The next step is to extract geometric parameters of the best-fitting ellipse
from the algebraic equation (1). We first check the existence of a tilt, which is
present only if the coefficient B in (1) is non-zero. If that was the case, we first
need to eliminate the tilt of the ellipse. Denoting the tilt angle of the ellipse by
0, the following coordinate rotation transformation is employed

x = cos Oz’ — sin 0y’
{ v 2)

y = sin 0z’ + cos Oy’

Substitute the above expressions into Eq. (1), we get

(Ac® + Bes + Cs?) 2 4 (—2Acs + (¢ — s%) B+2Ces) 2'y/+

(As*> — Bes + Cc?) y* + (Dc+ Es)a’ + (=Ds + Ec)y' +1 =0, (3)

where ¢ = cosf and s = sinf. Let the term before zy to be zero, the
following equation for 6 is achieved

—2Acosfsinf + (cos 62 — sin 02) B+ 2C cosfsind = 0,
from which we know 6 = %arctan (&) Now the constants ¢ and s are

known, Eq. (3) is reduced to
All'/2 4 C/y/2 4 DI:E/ + E/y/ +1= 07 (4)
where A’, C’, D' and E’ are all known constants. The only remaining step

for the ellipse fitting is to transform Eq. (4) into the following canonical form

(@' —2)* | (v — o)’
a2 + B2 =1, (5)
in which (x(, y() is the center of the ellipse in the rotated coordinate system,
and a and b are the lengths of the semi-axes. Apply a square completion method
to Eq. (3), we get

(a/ + D'/ (24))°  (a + E'/(2C)° _ ©)
(F"/A) (F/C") 7
where F/ = —1 + (D?)/(4A") + (E'?)/(4C"). Compare Eqgs. (5) and (6), it

easy to notice
, —_D’ , _E' F! F
T = g = 5e =\ = ar




Substitute the above expressions of x(, and y( into Eq. (2), we get the
coordinate of the ellipse center in the original coordinate system

_ D/ . El
{ To = —cost +sm9w

— _ainpll _ E"
Yo = 51n02A, COSGQC,

References

[1] Cynthia Y. Young, Precalculus, John Wiley & Sons, 2010.



