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Introduction

Neutrino Factory/Muon Collider

The shape of the jet is important!

K.T. McDonald, “The R&D Program for target and capture at a Neutrino Factory and Muon Collider 
Source”, NF&MCC Technical Board Meeting, LBL, Oct.3, 2000



Introduction―Mechanism of Jet Breakup & Atomization

R.D. Reitz and F.V. Bracco, Mechanism of atomization of a liquid jet,Phys. Fluids, Vol.25, No.10,Oct.1982
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Introduction―Dynamic Problems in Hg Target Flow

• Internal Flow
– Dynamics of MHD pipe flow

– The influence of nozzle design on jet exit conditions

• Jet
– Dynamics of free jet under MHD & energy deposition

– Jet breakup & instability mechanism and the effects of MHD & energy 
deposition

– Comparison with known classical free jet dynamics

– Inlet conditions to the Dump



Mathematical Model for Hg Flow ―Parameters (1)

Mercury Properties (25 ⁰C )

Density 13.546 kg/L

Sound Speed 1451 m/s 

Viscosity 1.526E-3 kg/s⋅m

Dynamic Viscosity 1.127 m^2/s

Thermal Conductivity 8.69 W/m⋅K

Electrical Conductivity 1E6 Siemens/m

Specific Heat 0.139 J/kg⋅K

Prandtl Number 0.025

Surface Tension 465 dyne/cm

Permeability 4*PI*1E-7

Variable Values

Velocity in Pipe 3.4 m/s

Beam Energy 24 GeV

Beam Intensity 10 TP

Beam Pulse Length 2 ns

Magnetic Strength 20 Tesla

Pipe Diameter 2.54 cm (1″)

Jet Diameter 1 cm

Beam Diameter 0.15 cm RMS

Static Pressure inside Pipe 18.5 Bar (kPa)

Dynamic Pressure inside Pipe 0.7 Bar (kPa)

Air Density Outside Jet 0.0013 kg/L

Jet Tilts w.r.t. Magnetic Axis 33 mrad

Beam Tilts w.r.t. Magnetic Axis 67 mrad



Mathematical Model for Hg Flow ―Parameters (2)

Small Ma Incompressible
Re* for Curved Pipe?
Re* effected by B Field? 
(Re* for Curved Tube is Larger than Straight Pipe*)

Turbulence ?



Mathematical Model for Hg Flow ―Incompressible Flow (No MHD)

Nondimensional Governing Equations

Where 

Governing Equations



Mathematical Model for Hg Flow ― Incompressible Flow (MHD) 

Governing Equations

Nondimensional Governing Equations

Lorentz Force



Mathematical Model for Hg Flow ― Proton Beam Energy Conversion 

• Assume as a δ function (A. Hassanein)

where

• Instantaneous energy deposition (P. Sievers and P. Pugnat)

• 1D parabolic energy distribution of the beam long the propagation direction of the 

Hg flow. Sin^2 Envelop with τ=2ns pulse length (I.F. Barna et al.)

• Monte Carlo Code (MARS, GRAN, FLUKA) 

• Using Sergei’s calculation for a 24-GeV, 10-TP proton beam (W.Bo, R. Samulyak)



Mathematical Model for Hg Flow ― Boundary Conditions 

Pipe Flow
• No slip at the pipe wall;
• Non-conducting wall;
• Velocity profile and initial values;
• Inlet and outlet pressure;
• Magnetic field profile;

Jet Flow
• The normal component of the velocity field is continuous across the interface;
• The pressure jump at the interface is defined by the surface tension τ and
main radii of curvature:

• The normal component of the current density vanishes at the interface giving
rise to the Neumann boundary condition for the electric potential:

• Heat transfer balance at the free surface;



Next Step

• Study the energy deposition conversion for proton beam on jet to set up 
proper mathematical model for energy equation;

• Jet exit condition: 

– The influence of discontinuity boundary conditions transiting from pipe flow 
to jet flow;

– Nozzle design on jet exit condition

• Dynamics of MHD on pipe flow 



Equation of State (for compressible flow)

• Continuous Model

• Two Phase EOS

• Homogeneous Model

• Heterogeneous Model

• ISM Model 

• SESAME Library

• Summation Method



Equation of State ― Continuous Model 

• Continuous Model (David P. Schmidt) 

and     are the sound speeds of the pure phases. ω is zero in cartesian coordinates 
and unity in polar coordinates. 



Equation of State ― Two Phase Model
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Equation of State ― Homogeneous Model 

• Homogeneous Model (Bruggeman)

Liquid/vapor mixture is treated as a pseudo-fluid that obeys an equation of state 
of a single component flow. 

Conductivity of the mixed phase is calculated by 



Equation of State ― Heterogeneous Model 

• Heterogeneous Model (Jian Du, Roman Samulyak)

(1) Pure Vapor (Polytropic EOS):

Stiffened EOS Model (incompressible single Liquid Phase )

Adiabatic exponent γ=3.19;
Stiffening constant     =3000bar;
Energy translation    =4.85×10E4 erg/sgK

(2) Liquid (Stiffened Polytropic EOS):

(3) Liquid-Vapor Mixture:

Where



Equation of State ― ISM Model 

• ISM Model (Ihm, Song, Mason)

Predict the density of Hg from the melting point up to 100 degree above the 
boiling Temperature.

Where



Mathematical Model for Hg Flow ― Equation of State(4)

• SESAME Library
The SESAME opacity tables are compatible with the equation of state SESAME tables

• Summation Method (Ahmed Hassanein)
Sum of cold compression, ion thermal, and electron thermal terms

Where 


