A Coupled Level Set/Volume-of-Fluid (CLSVOF) Method for Target Flow Simulation

Yan Zhan

8-18-2011

Outline

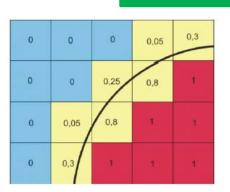
- What is CLSVOF?
- Why CLSVOF?
- How to implement CLSVOF?

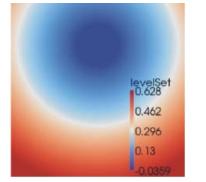
What is CLSVOF?

Volume of Fluid (VOF)	Level Set (LS)	
 Volumetric phase fraction F Phase 1 F=1 Phase 2 F=0 Interface 0<f<1< p=""> </f<1<> Transport of F: 	 Level-Set function Φ Phase 1 Φ>0 Phase 2 Φ<0 Interface Φ=0 Transport of F: 	
$(\rho F)_{i} + \nabla \cdot (\rho \widetilde{U} F) = 0$ • Mass-conservative • Diffusion of the interface	$(\rho\phi)_{t} + \nabla \cdot (\rho \widetilde{U}\phi) = 0$ • Robust geometric information (normals and curvatures); automatic handling of topological changes (merging and pinching); • Not mass-conservative	

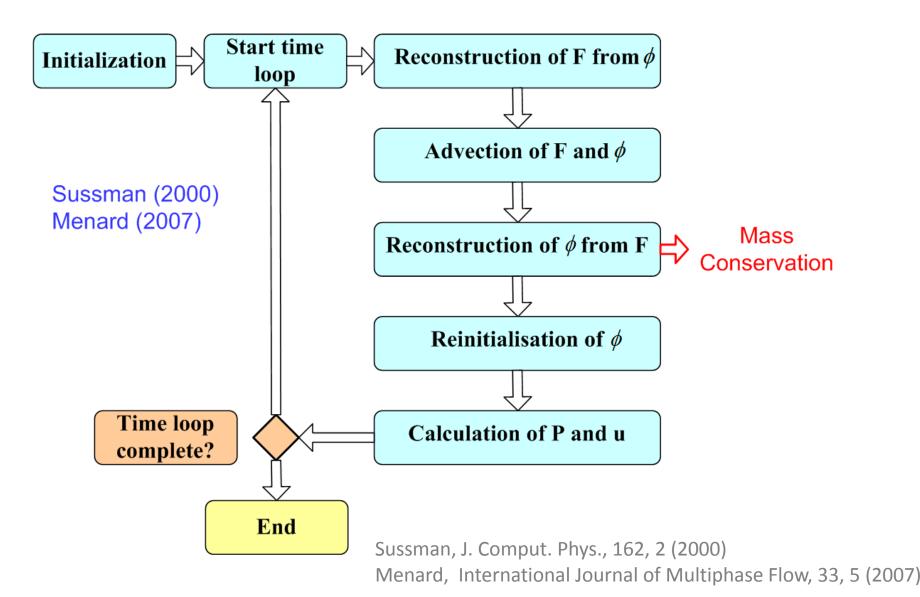
Volume of Fluid

Level Set

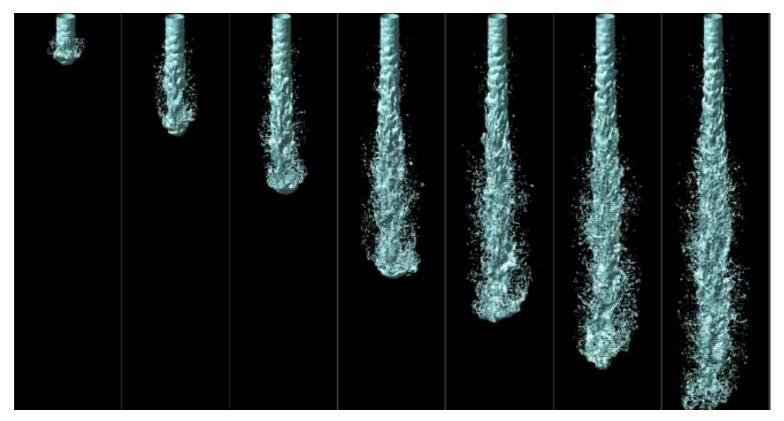




Why CLSVOF?



Why CLSVOF?

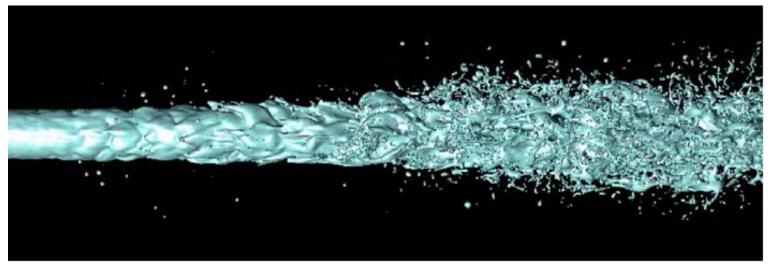


Development of the liquid jet (time step is 2.5 μm) (Menard, 2007)

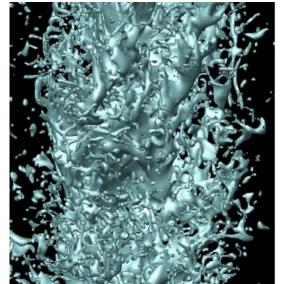
Jet characteristics

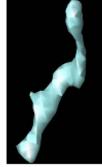
Diameter, D (μm)	Velocity (m s ⁻¹)	Turbulent intensity	Turbulent length scale
100	100	$u'/U_{\rm liq}=0.05$	0.1 D
Phase	Density (kg m ⁻³)	Viscosity (kg m ⁻¹ s ⁻¹)	Surface tension (N m ⁻¹)
Liquid	696	1.2×10^{-3}	0.06
		1×10^{-5}	

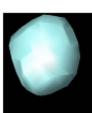
Why CLSVOF?



Liquid jet surface and break-up near the jet nozzle





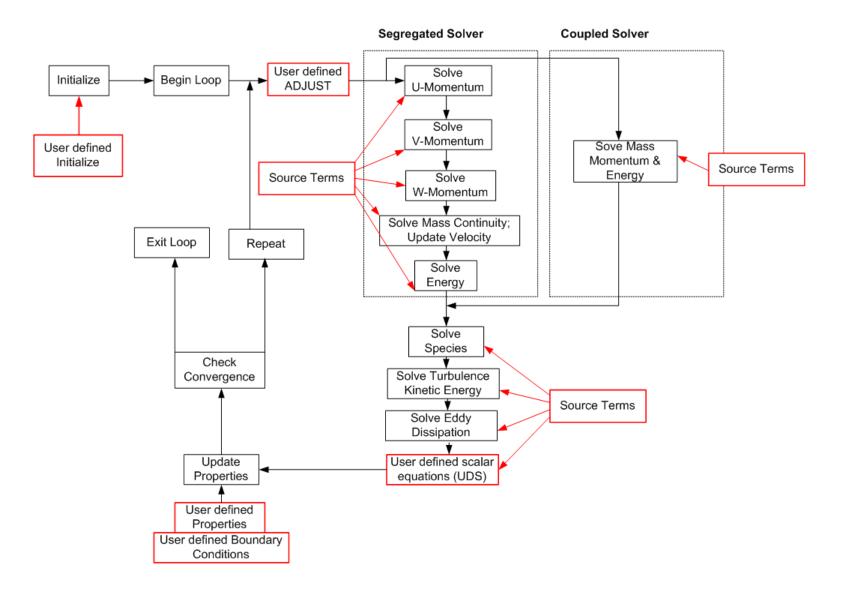


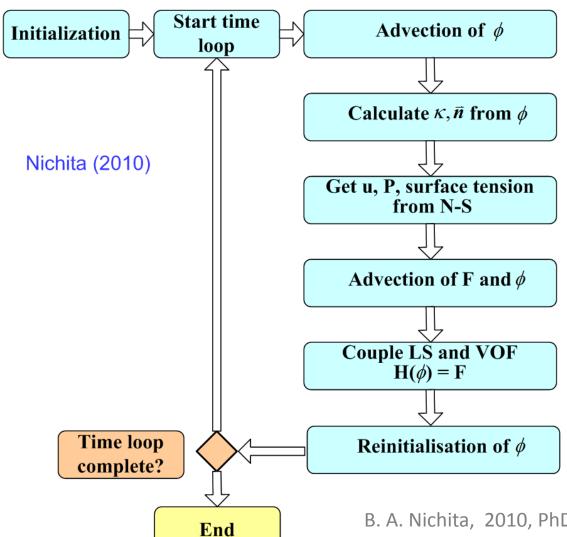
Liquid parcels

 Couple LS with VOF within the CFD code FLUENT by implementing user defined functions (UDF)

UDF

- User written program that can be linked with FLUENT at run-time
- Programmed in C and FLUENT defined macros
- User-defined scalar (UDS) transport modeling customize
 FLUENT for level set equation



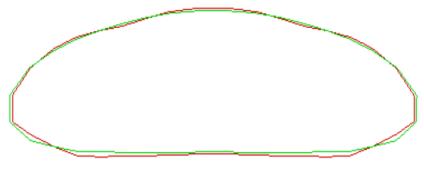


B. A. Nichita, 2010, PhD thesis, An improved CFD tool to simulate adiabatic and diabatic two-phase flows

- B.A. Nichita's test case
 - A bubble rising in a viscous fluid due to gravity



Level set contour (red) and volume-of-fluid contour (green) without coupling between LS and VOF (with large loss of mass).



Level set contour (red) and volume-of-fluid contour (green) after solving the coupling equation between LS and VOF.

Setup UDS for LS in FLUENT

Scalar ø Transport Equation

$$\frac{\partial \rho \phi}{\partial t} + \nabla \cdot (\rho \widetilde{U} \phi) = 0$$

Unsteady term

- Convection term
- $\nabla \cdot (\rho \widetilde{U} \phi)$

Diffusive term

0

Source term

0

Additional term appear for turbulent flow such as $-\rho \overline{u'_{j}\phi'} = \Gamma_{i} \frac{\partial \phi}{\partial x}$

$$-\rho \overline{u'_{j}\phi'} = \Gamma_{i} \frac{\partial \overline{\phi}}{\partial x_{j}}$$

- Setup UDS for LS in FLUENT
 - Set number of UDS
 - Set UDS terms (Appendix A)
 - DEFINE_UDS_UNSTEADY
 - Get unsteady term for scalar equation
 - DEFINE_UDS_FLUX
 - Returns user specified flux
 - DEFINE_DIFFUSIVITY
 - Returns user diffusion coefficient (Γ)
 - DEFINE_SOURCE
 - Set UDS boundary conditions
 - Constant
 - UDF: DEFINE_PROFILE

Appendix Equations

Incompressible two-phase flow

$$\nabla \cdot U = 0$$

$$U_{t} + U \cdot \nabla U = -\frac{\nabla p}{\rho(\phi)} + \frac{1}{\rho(\phi)} \nabla \cdot (2\mu(\phi)D) - \frac{1}{\rho(\phi)} \gamma \kappa(\phi) \nabla H(\phi) + F$$

$$\phi_t + U \cdot \nabla \phi = 0$$

$$F_{r} + \nabla \cdot (UF) = 0$$

Density $\rho(\Phi)$, viscosity $\mu(\Phi)$, and curvature $\kappa(\Phi)$ are written as,

$$\rho(\phi) = \rho_{g} (1 - H(\phi)) + \rho_{t} H(\phi)$$

$$\mu(\phi) = \mu_{g} (1 - H(\phi)) + \mu_{t} H(\phi)$$

$$\kappa(\phi) = \nabla \cdot \frac{\nabla \phi}{|\nabla \phi|}$$

D is defined as the rate of deformation tensor

$$D = (\nabla U) + (\nabla U)^{\mathrm{T}}$$

Appendix Equations

Incompressible two-phase flow

The surface tension force is

$$\frac{1}{\rho(\phi)}\gamma\kappa(\phi)\nabla H(\phi)$$

where H is the Heaviside function,

$$H(\phi) = \begin{cases} 1 & \text{if } \phi > 0 \\ 0 & \text{otherwise.} \end{cases}$$

F will be initialized in each computational cell Ω_{ij}

$$F_{ij} = \frac{1}{\Delta r \Delta z} \int_{\Omega_{ij}} H(\phi(r, z, 0)) r dr dz$$

where Ω_{ii} is

$$\Omega_{ij} = (r, z) | r_i \le r \le r_{i+1}$$
 and $z_j \le z \le z_{j+1}$

Appendix Equations

- Re-Initialization
 - Reinitialize φ

$$\int_{V} \frac{\partial \phi}{\partial \tau} + \int_{V} w \cdot \nabla \phi = \int_{V} \operatorname{sign} \phi_{0}$$

where w is the characteristic velocity pointing outward from the free surface

$$w = \operatorname{sign} \, \phi_0 \frac{\nabla \phi}{|\nabla \phi|}$$

The sign function is

$$\operatorname{sign}_{\epsilon}(\phi_0) = 2[H_{\epsilon}(\phi_0) - 1/2]$$