
Superconducting 

Magnet R&D for 

COMET 

Makoto Yoshida (KEK) 
 

NuFact11 

1-6 Aug, 2011 



Issues in Superconducting Magnet R&D 

 Solenoid capture scheme is proposed in Neutrino 
Factory and intense muon (m-) source for mu-e 
conversion experiments, COMET at J-PARC and Mu2e 
at FNAL. 

 Higher magnetic field is needed for better collection 
efficiency of pions. 

 Superconducting magnets will provide 5T on the target in 
COMET/Mu2e, 20T in NF 

 Magnet components are irradiated by severe radiation 
from the embedded target. 

 

 Radiation issues should be considered in a magnet 
design. 

 Investigation of irradiation effects on magnet materials 
has been initiated in 2010 with reactor neutrons 

 



COMET@J-PARC 

 Searching for muon-
electron conversion  
 J-PARC E21 

 8GeVx7microA pulse 
protons from MR 

 Aims at 1018 negative 
muons for 1021 protons 

 Superconducting 
solenoid magnets from 
end to end; 
 Pion capture 

 Muon Transfer 

 Spectrometer 

 Detector 
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COMET Superconducting Magnet System 



Al-stabilized superconductor 

 NbTi Rutherford cable 
with aluminum stabilizer 
 Less nuclear heating than 

with Cu stabilized cable 

 

 Doped, cold-worked pure 
aluminum 
 Good residual resistance 

 RRR~500 
(r0=0.05nWm@4K) 

 Good yield strength 
 85MPa@4K 

COMET design value 

 Size: 4.7x15mm 

 Offset yield point of Al@4K: >85MPa 

 RRR@0T: >500 

 Al/Cu/SC: 7.3/0.9/1 

 14 SC strands: 1.15mm dia. 
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Concrete 

Cryostat-1 

Cryostat-2 

Cryostat-3 

The magnet system is 

separated in 3 parts: 
  Cryostat-1: CS+UpstreamTS 
  Cryostat-2: DownstreamTS 

  Cryostat-3: ST+SS+DS 
 

Purpose of separation: 
• At concrete wall 

• Different radiation control level 

• Movable Cryostat-2 for install / maintainance 

• Vac. separation window / antip absorber at mid. of TS 

• Beam monitors 

• At stopping target 

• inject electron beam into ST 

• Muon beam monitor 

LHe Control 

 Dewar 

LHe Transfer Tube 

outside Iron Yoke 



Pion Capture 

Solenoid 

 
LHe Transfer from TOP 
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Capture Solenoid 

 of COMET 

7.9W 2.0W 1.0W 0.7W 

0.9W 1.4W 

Neutron flux (n/cm2/proton) 

  Maximum heat deposit 
 10 mW/kg 

  Maximum dose 
 0.07 MGy/1021p 

  Neutron flux 
 1x1021 n/m2/1021p 
 fast neutrons 6x1020 n/m2/1021p 

( >0.1MeV) Neutrons penetrates thick 45cm tungsten shield 

  surrounding the target 

 

Neutron fluence for experimental life-time (~1021 p) 

  approaches a level of ITER magnets  (ITER requirement: <1022 n/m2) 

 

What’s the effects on magnet properties? 

proton beam 

8GeVx7microA 



Radiation hard magnet material 

 Insulator, resin 

BT-resin, Cyanate ester 

Polyimide/Glass composite 

 Thermal insulator 

Al-coated polyimide film; Less outgas 

 Support structure 
GFRP, Titanium rod 

 Superconductor 

NbTi, Nb3Sn would be OK up to 1022 n/m2 

 



Problematic components 
 Stabilizer 

 Aluminum alloy 

 Copper 

 Thermal conductor 
 Pure aluminum 

 Copper 

 Aluminum alloy 

 Thermo sensor 
 No experience at 1021 n/m2 

 Fast-neutron irradiation induces 
defects in metal. 
 

 Defects could be accumulated at 
Low temperature, 

 and causes degradation of 
electrical/thermal conductivity 

 

 
 Problems in 

 Quench protection, Stability 

 Cooling 

 

100K 150K 

COMET CS 

LHC Project Report 209 



Irradiation effects on 

Al, Cu in literature 

 pure Al (RRR=2000)  

 Fast neutron 2x1022 

n/m2 Induces 

ri=3.8nW.m [1]  

 Perfect recovery by 

annealing at RT 

 pure Cu 

 ri=1.2nW.m [1]  

 10% damage remains 

after annealing at RT 

Recovery after irradiation 2x1022 n/m2 (E>0.1MeV) 

Aluminum 

[1] J.A. Horak and T.H. Blewitt, J. Nucl. Materials, 

Vol. 49 (1973) p161 

Copper 



Indirect Cooling of 

Capture Solenoid 
 Possible problem with Helium bath 

cooling of Capture Solenoid, due to 
Tritium production by 3He(n,p)3H 

 Propose conduction cooling to reduce 
irradiation of LHe 

 Remove nuclear heating (max. 20W) 
by pure aluminum strip in between coil 
layers 

 Thermal conduction can be degraded 
by neutron irradiation 

 

 Temperature gradient in coil 
 0.5mm thick, l=4000W/m-K 

(RRR=2000)  DT=0.12K 

 If irradiation makes l=400W/m-K  
DT=1.2K 

 Taking into account margin for 
irradiation damage, thick aluminum will 
be used 
 2mm, l=400W/m-K  DT=0.3K 

COMET 

ATLAS CS 

NIMA584, p53 (2008) 

Heat Load 

Heat Removal 



Irradiation test with reactor neutron 

 Fast neutrons can degrade 

electrical/thermal conduction of Al, Cu 

 Cold-worked Al-stabilizer and CERNOX 

sensor was irradiated by reactor neutrons 

 Irradiation and measurement must be 

performed in low temperature to reproduce 

magnet operation situation 



Low Temperature 

Irradiation Facility 

 Kyoto Univ. Research 
Reactor Institute 

 ５MW max. thermal power 

 

 Cryostat close to reactor core 

 Sample cool down by He gas 
loop 
 10K – 20K 

 

 Fast neutron flux 
 >0.1MeV) 1.4x1015 

n/m2/s@1MW 

[2] M. Okada et al., NIM A463 (2001) pp213-219  

KUR-TR287 (1987) 

0.1MeV 

[2] 



 

reactor 

Cryogenics 



Irradiation sample 
 Aluminum stabilizer sample from the 

superconductor by wire electrical 
discharge machining in KEK 
 Keep defects by cold-work 

 Size: 1mmx1mmx70mm 

 Voltage taps with 45mm spacing 

 4 wire resistance measurement by 
nano-voltmeter 

 CERNOX CX-1050-SD close to 
sample temperature (also irradiated) 

Wire EDM 

Irradiation sample 
• 5N pure aluminum + Cu, Mg 

     with 10 % cold work 

• 1.35mW @RT, 3mW @10K 



Result 

 Fast neutron exposure at 12K-15K 

 Resistance was measured in situ. 

 Resistance increased in 
proportional to neutron fluence in 
the range of 1019-1020 n/m2 

 No threshold at low neutron fluence 

 Observed ri = 0.056 nW.m for 
2.3x1020 n/m2 (>0.1MeV) 
 Good agreement with pure 

aluminum results (cf. [1]) 

 In COMET life time, resistivity of 
stabilizer will increase by a factor of 
4 for neutron fluence of 6x1020 n/m2 
Seasonal warmup would be 
necessary 

M. Yoshida et al., ICMC2011 



Recovery by annealing at RT 

 Perfect recovery is observed 

 Temperature drift due to CERNOX sensor degradation? 



Summary 

 Solenoid capture scheme is employed in NF/MC, mu-e conversion 
experiments 

 Conceptual design of coil support, cryostat and cryogenics was 
carried out for COMET 

 Radiation issues are most important for the feasibility 
 Indirect cooling 

 Radiation hard organic materials 

 Irradiation effects on electrical and thermal properties 

 Active R&D on irradiation effect is underway 
 First tests successfully done in 2010 Nov.-2011 Feb. 
 Degradation of electric resistivity of Al-CuMg was observed from ~1020 

n/m2. 

 Full recovery by thermal cycle to room temperature was also confirmed. 

 Will investigate different additives, copper, pure aluminum for thermal 
conduction. 

 


