Bunch Merging in the Helical Channel

6/21/2011

Muons, Tuesday Muon Front End Meeting Cary Y. Yoshikawa We are on the edge of a proof of principle helical channel design that merges 13 bunches exiting a first HCC, which fits the acceptance of a second HCC that cools the merged bunch.

"Proof of Principle" Design

>40m of "bunch preparation" that puts different bunches at different energies.

≻ V'_{max} = 1 MV/m, 204.17 MHz < f < 271.84 MHz
> η = 0.43

➢ 60m of drift in the same helical channel w/o RF.

≻η = 0.43

- ≻ ~5m RF capture into a single bunch
 - ≻ V'max = 10 MV/m, f = 200 MHz

≻η = 0.43

General HCC parameters:

- λ = longitudinal spatial period = 1 m
- r_{ref} = 16 cm, κ = pitch = 1, η = 0.43, Bsol(z-axis) = 5.7 T

6/21/2011

Boundary Conditions

(HCC reported by Katsuya at the 2011 Winter MAP Meeting @ JLAB)

Parameter list

	Z	b	b'	bz	V	E	К	λ	ε _μ	ε _τ	ε	ε _{6D}
unit	m	Т	T/m	Т	GH z	MV/m		m		mm rad	mm	mm ³
	Chann el length	@ ref	@ ref	@ ref	RF		p_{\perp}/p_z		Trans- missio n	RMS normalized	nd of n	nerger
0									1.0	21	23	8900
1	100	1.2	-0.21	-4.2	0.2	16	1.0	1.0	0.75	1.9	4.3	9.4
2	91	1.8	-0.42	-6.0	0.4	16	1.0	0.7	0.62	0.86	1.8	0.99
3	86	3.1	-1.29	-10.7	0.8	16	1.0	0.4	0.41	0.32	1.0	80.0
4	24	4.2	-2.29	-14.0	0.8	16	1.0	0.3	0.38	0.34	1.1	0.07
										1		

start of merger

Boundary Conditions

(HCC reported by Katsuya at the 2011 Winter MAP Meeting @ JLAB) $Parameter \ list$

	Z	±Δr	±∆р/ р	b	b'	bz	V	К	λ	Ν _μ	ε _T	ε	ε _{6D}
unit	m	cm	%	Т	T/m	Т	GHz		m		mm rad	mm	mm ³
	Channe I length	Full Width	Full width	@ ref	@ ref	@ ref	RF				end of m ↓	erger	
1	0	15	22	1.3	-0.5	-4.2	0.325	1.0	1.0	388	20.4	42.8	12900
2	40	8	10	1.3	-0.5	-4.2	0.325	1.0	1.0	375	5.97	19.7	415.9
3	49	7	10	1.4	-0.6	-4.8	0.325	1.0	0.9	354	4.01	15.0	10.8
4	129	3	2.5	1.7	-0.8	-5.2	0.325	1.0	0.8	327	1.02	4.8	2.0
5	219	1.7	1.8	2.6	-2.0	-8.5	0.65	1.0	0.5	327	0.58	2.1	3.2
6	243	1.6	1.3	3.2	-3.1	-9.8	0.65	1.0	0.4	327	0.42	1.3	0.14
7	273	1.3	1.3	4.3	-5.6	-14.1	0.65	1.0	0.3	327	0.32	1.0	0.08
8	303	1.2	1.1	4.3	-5.6	-14.1	1.3	1.0	0.3	327	0.34	1.1	0.07

Muons, Tuesday Muon Front End Meeting MC Design workshop @BNL K. Yonehara Energy of reference is scaled/accelerated from ~120 MeV out of Katsuya's HCC to 200 MeV for bunch merging, but emittances are assumed conserved in the acceleration.

Bunch Preparation

Bunch Preparation

Drift w/o RF for Bunch Merge

Drift w/o RF for Bunch Merge

Capture of 13 Bunches into a Single RF Bucket

Capture of Bunches into a Single RF Bucket

6/21/2011

Muons, Tuesday Muon Front End Meeting Cary Y. Yoshikawa

Capture of Bunches into a Single RF Bucket

Conclusions and Future

- We are on the edge of a proof of principle helical channel design that merges 13 bunches exiting a first HCC, which fits the acceptance of a second HCC that cools the merged bunch.
- The discrepancy where 200 MHz has a smaller ϵ_L acceptance than the 325 MHz case needs to be understood/rectified. Both used 16 MV/m.
- Future (assuming HCC ϵ_L for 200 MHz case can be made to accept 9/more bunches):
 - Consolidate frequencies in preparation portion to produce a more practical design.
 - Think about enhanced longitudinal cooling at RF capture (upstream of second HCC).
 - Incorporating cylindrical wedges? (Use lessons learned from "maximal use of wedges" in Quasi studies a few months ago?)

