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Magnetohydrodynamics of a Continuous
Mercury Jet Coaxially Entering a Solenoid

1 Introduction

We consider a continuous cylindrical jet of mercury of constant mass density ρ = 13.6 g/cm2

and conductivity σ ≈ 1016/s (Gaussian units) that enters a semi-infinite solenoid magnet of
peak axial field B0 = 20 T and diameter D = 20 cm. The jet has radius R(z) ≈ 1 cm, and
its velocity components will be labeled vr(r, z) and vz(r, z) in a cylindrical coordinate system
in which the jet axis, and the magnetic field axis, is the z axis. The solenoid coil extends
from z = 0 to = ∞. The initial velocity vz(r,−∞) of the jet is of order 20 m/s.

The magnetic diffusion time τ = 4πσR2/c2 is small compared to the time scale D/vz

over which the magnetic field changes in the rest frame of the jet, so the magnetic Reynolds
number R = vzτ/D is much less than unity. As a consequence, the induced magnetic field
is small compared to that of the solenoid, which is “fully diffused” into the mercury. We
pursue a solution in which we ignore the induced magnetic field, and calculate the induced
electric field in the local rest frame of the jet via Faraday’s law. The fluid flow velocity
v(r, z) is assumed to be incompressible (∇ · v = 0), and is expanded in a power series in r,
with coefficients being functions of z, through second order.

2 Equation of Motion of the Fluid

The equation of motion of the mercury is [1]

ρ
dv

dt
= ρ

∂v

∂t
+ ρ(v · ∇)v = −∇P + ρchargeE +

j

c
×B + η[∇2v +∇(∇ · v)] + ρg, (1)

where P is the pressure, ρcharge is the electric charge density, E is the electric field, j is the
current density, c is the speed of light, B is the magnetic field, η = 0.0015 g/(s-cm) is the
viscosity and g is the acceleration due to gravity. At the free surface of the mercury jet, the
surface tension, γ = 470 dyne/cm, plays a role discussed later.

In this note we ignore gravity and viscosity, and seek only a steady-state solution in which
∂v/∂t = 0 (although we make some remarks about transient magnetic effects in sec. 5). We
also assume that mercury is incompressible, so that

∇ · v = 0. (2)

A well-known consequence of incompressibility is that 〈v〉A is constant, where 〈v〉 is the
average velocity along the jet axis and A is the cross sectional area of the jet.
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Then, the equation of motion (1) reduces to

ρ(v · ∇)v = −∇P + ρchargeE +
j

c
×B. (3)

3 Maxwell’s Equations

While this note will emphasize steady-state solutions, we have a larger interest in a pulsed
jet, so we briefly discuss the possible time dependence of the electromagnetic fields. The
Maxwell equations are

∇ · E = 4πρcharge ≈ 0, (4)

∇ ·B = 0, (5)

∇× E = −1

c

∂B

∂t
, (6)

∇×B ≈ 4π

c
j, (7)

where we ignore charge separation in the mercury, and also ignore the displacement current
[3], i.e., we ignore high-frequency phenomena such as plasma oscillations, and we take the
permeability µ of mercury to be unity.

In this approximation, the divergence of eq. (7) yields

∇ · j = 0, (8)

and hence ρcharge is constant in time.
In the present problem, the magnetic field of the solenoid can be considered as a known

external, time-independent field Bext that obeys ∇×Bext = 0 and ∇2Bext = 0 in the region
of the mercury jet. The equations (4)-(7) then apply to the induced electric and magnetic
fields Eind and Bind.

Because the conductivity of mercury is not large, it may be that Bind ¿ Bext and an
analysis of the motion of the jet can be carried out while ignoring Bind.

4 Ohm’s Law

The current density is related by Ohm’s law in the local rest frame of the mercury,

j? = σE?. (9)

Since v ¿ c, rest frame quantities are related their lab frame values by

j? ≈ j− ρchargev ≈ j, (10)

and
E? ≈ E +

v

c
×B, (11)
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ignoring terms of order v2/c2 ¿ 1. We can combine eqs. (9) and (11) to obtain

j = σ
(
E +

v

c
×B

)
, (12)

or equivalently,

E =
j

σ
− v

c
×B. (13)

Equation (12) suggests that there will be a current flow due the the Lorentz force of the
external magnetic field on the metal jet. In the first approximation, this current would be
transverse to the jet velocity, and hence transverse to the jet axis. Such a current quickly
(τ ≈ 4π/σ ≈ 10−15 s) leads to the accumulation of charge on the surface of the jet, which
sets up an electric field that cancels the transverse component of the v × Bext force, and
hence cancels the transverse current.

The only possibility for steady currents in an axisymmetry jet in an axisymmetric mag-
netic field is for azimuthal currents. In this case, no electric field due to charge separation
exists to cancel the currents. The azimuthal currents are considered in detail in sec. 6.4.

5 Magnetic Diffusion Time and Reynolds Number

In a medium with high enough conductivity, any external magnetic field is cancelled its
interior by the field that arises from induced surface currents. We argue that mercury is
not a good conductor in this sense, and that an external magnetic field penetrates into the
interior of mercury essentially without cancellation.

Together with eq. (13), the third and fourth Maxwell equations, (6) and (7), yield

∂Bind

∂t
= ∇× (v ×Bind) +

c2

4πσ
∇2Bind. (14)

For low fluid velocities, eq. (14) has the form of a diffusion equation. In our example of
jet of radius R ≈ 1 cm, the maximum of ∇2Bind is approximately Bind/R

2, so the induced
magnetic field induced as the jet first enters the magnet dies out with characteristic time

τ ≈ 4πσR2

c2
≈ 4π · 1016 · (1)2

(3× 1010)2
≈ 10−4 s, (15)

The spatial scale for variation of the solenoid field is its diameter D, so the time scale for
changes in the motion of the jet is of order D/vz ≈ 0.01 s ≈ 100τ . Thus, transient magnetic
effects die away much more rapidly than changes in the motion of the jet, and the induced
magnetic field never grows large enough to cancel the external field. Hence, the magnetic
field inside the mercury can be well approximated as that of the external solenoid [2]. This
result is further validated in sec. 6.3.

The so-called magnetic Reynolds number is

RM =
vzτ

D
≈ 0.01, (16)

whose small value is a reminder that the magnetic field lines are “fully diffused” into the
mercury (and NOT “frozen in”).
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6 Approximate Equation of Motion

6.1 Power Series Expansion for the Velocity Field of a Circularly
Symmetric Axial Jet

We analyze a circular jet with zero initial angular momentum about its axis as it moves
coaxially through a circularly symmetry magnetic field. Then, the jet has zero angular
momentum along its entire trajectory, and its azimuthal velocity vanishes,

vφ = 0. (17)

With condition (17), this implies that

1

r

∂rvr

∂r
= −∂vz

∂z
. (18)

We will make a series expansion of vr and vz of the form

vz(r, z) =
∑
n

fn(z)rn, (19)

vr(r, z) =
∑
n

gn(z)rn+1, (20)

noting that cylindrical symmetry requires vr(0, z) = 0. The divergence condition (2) tells us
that gn = −f ′n/(n + 2), where the ′ means d/dz, so the the radial velocity expansion is

vr(r, z) = −∑
n

f ′n(z)

n + 2
rn+1, (21)

If vz decreases, then vr increases according to eq. (21) and the radius of the jet grows,
consistent with incompressible flow in which 〈vz〉A = constant.

It is tempting at this stage to suppose also that the motion of the jet is irrotational, i.e.,
that

∇× v = 0. (22)

However, a simple model of eddy current effects in the liquid metal jet [2] suggests that a
velocity shear will result as the jet enters the magnetic field, leading to nonzero curl of the
velocity.

Our plan is to use the expansions (19) and (21) for the velocity components in the
equation of motion (3), keeping terms in f0, f1 and f2. Then,

vz ≈ f0 + rf1 + r2f2, (23)

vr ≈ −r

2
f ′0 −

r2

3
f ′1 −

r3

4
f ′2. (24)

We will find that since f1(−∞) = 0 = f ′1(−∞), f1 vanishes everywhere. Also, to deduce a
differential equation for f ′′2 we will have to keep terms up to r3 in the radial equations of
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motion and up to r4 in the axial equation. To these orders we find that

ρ(v · ∇)vr ≈ ρr

4
[(f ′0)

2 − 2f0f
′′
0 ]

+
ρr2

6
[3f ′0f

′
1 − 3f1f

′′
0 − 2f0f

′′
1 ]

+
ρr3

36
[18f ′0f

′
2 + 8(f ′1)

2 − 9f0f
′′
2 − 12f1f

′′
1 − 18f2f

′′
0 ], (25)

ρ(v · ∇)vz ≈ ρf0f
′
0

+
ρr

2
[f1f

′
0 + 2f0f

′
1]

+
ρr2

3
[2f1f

′
1 + 3f0f

′
2]

+
ρr3

12
[4f2f

′
1 + 9f1f

′
2]

+
ρr4

2
f2f

′
2. (26)

6.2 Power Series Expansion of the Pressure

We expand the pressure as

P (r, z) ≈ ρ[q0(z) + q1(z)r + q2(z)r2 + q3(z)r3 + q4(z)r4]. (27)

This is subject to the condition that the external pressure vanishes at the free surface at
radius R(z), but the surface tension γ provides a small nonzero pressure γ/R, so that

γρ

R
= q0 + q1R + q2R

2 + q3R
3 + q4R

4. (28)

All the qi except q0 and all derivatives q′i vanish at z = −∞. We will find that both q1 and
q3 are zero.

6.3 Power Series Expansion of the Magnetic Field of the Solenoid

The cylindrically symmetric magnetic field of the solenoid obeys ∇ ·B = 0 and ∇×B = 0,
and so can be expanded in terms of the axial field as

Bz(r, z) =
∑
n

(−1)n B(2n)(z)

(n!)2

(
r

2

)2n

= B(z)− B′′(z)r2

4
+ ..., (29)

and

Br(r, z) =
∑
n

(−1)n+1 B(2n+1)(z)

(n + 1)(n!)2

(
r

2

)2n+1

= −B′(z)r

2
+

B′′′(z)r3

16
− ..., (30)

where

B(z) ≡ Bz(0, z), B(n) =
dnB

dzn
, and B′ = B(1), etc. (31)
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6.4 Power Series Expansion of Current Density and of the Lorentz
Force

We desire an analysis of the motion of the mercury that proceeds without calculation the
small induced electric and magnetic fields. In this case, we cannot use the 4th Maxwell
equation (7) to replace the current density in eq. (3) by the curl of the magnetic field (which
vanishes in the proposed approximation).

Rather, we deduce the form of the current density via Ohm’s law (12). The lab frame
electric field is zero in the present case, so we have

j =
σ

c
v ×B. (32)

Both v and B are assumed to be axisymmetric, so (as discussed in sec. 4) the only nonvan-
ishing component of the current density is

jϕ =
σ

c
(vzBr − vrBz) ≈ σ

c

(
−rvzB

′

2
+

r3vzB
′′′

16
− vrB +

r2vrB
′′

4

)
, (33)

using the expansions (29)-(30), which presumes that we can neglect the magnetic fields
induced by the eddy currents.

The nonzero components of the j×B force are then

(
j

c
×B

)

r

=
jϕBz

c

≈ σ

c2

(
−rvzBB′

2
+

r3vzB
′B′′

8
+

r3vzBB′′′

16
− vrB

2 +
r2vrBB′′

2

)
, (34)

(
j

c
×B

)

z

= −jϕBr

c

≈ σ

c2

(
−r2vz(B

′)2

4
+

r4vzB
′B′′′

16
− rvrBB′

2
+

r3vrB
′B′′

8
+

r3vrBB′′′

16

)
.(35)

The lowest order term in the j × B force for an axial jet in a solenoid is the first term
in eq. (34), the so-called radial pinch. This contributes directly to the creation of a nonzero
radial velocity vr, and also leads to an internal pressure in the jet whose gradient affects
both vr and vz.

The leading axial force term in eq. (35) is the first, which reduces the axial velocity
wherever the axial magnetic field is varying in space.

By Lenz’ law, we expect the higher order terms in the j ×B force to oppose the lowest
order effect, and damp the perturbations due to the magnetic field. Thus, if the radial
pinch produced a negative radial velocity, the third term in eq. (35) would increase the axial
velocity (as the jet enters the solenoid), in contrast to the first term. However, the condition
of incompressibility, 〈vz〉A = constant, implies that as vz decreases on entering the magnet,
vr must grow so that A grows despite the radial pinch. As a consequence, the third term in
eq. (35) will also cause a reduction in vz that appears to be important.
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Even ignoring the higher-order terms in eq. (33) for the current density, the induced
magnetic field is predicted to be small, as claimed in sec. 5. To see this, we use the 4th
Maxwell equation,

(∇×Bind)ϕ ≈ −∂Bz,ind

∂r
≈ 4π

c
jϕ ≈ −2πσrvz

c2

∂Bz,ext

∂z
, (36)

which integrates to

Bz,ind ≈ πσr2vz

c2

∂Bz,ext

∂z
<∼

πσR2vz

c2

B0

D
≈ τ

vz

D
B0 ≈ RMB0 ≈ 0.01B0. (37)

Another way to deduce eq. (33) is via j ≈ j? = σE?, in terms of the electric field in
the the local rest frame of the fluid. While the field B of the solenoid in the lab frame is
time independent in our approximation, the corresponding field B? is time dependent, and
induces the field E? according to Faraday’s law,

∮
E? · dl? = −1

c

dΦ?

dt?
. (38)

However, we can take value of the the magnetic field B? to be the same as that in the lab
frame, since the induced lab-frame electric field will be proportional to v/c and the resulting
correction to B? will be of order v2/c2 ¿ 1. Likewise, t? = t plus corrections of order
v2/c2 ¿ 1.

We analyze a ring of radius r = r?, for which the lefthand side of eq. (38) is 2πrE?
ϕ. The

magnetic flux through this ring varies with time in the ? frame because solenoid appears to
be moving with respect to the ring, and because the radius of the ring is changing at rate
v?

r ≈ vr. We can calculate dΦ?/dt using lab-frame quantities via the convective derivative,
d/dt? = ∂/∂t + (v · ∇). Thus,

jϕ ≈ σE?
ϕ ≈ − σ

2πrc
(v · ∇)Φ = − σ

2πrc

(
vz

∂Φ

∂z
+ vr

∂Φ

∂r

)
. (39)

Equation (33) follows using the magnetic flux through the ring,

Φ =
∫ r

0
Bz(r) 2πrdr ≈ πr2B − πr4B′′

8
, (40)

in the approximation of eq. (29).

6.5 Power Series Expansion of the Equations of Motion

With eqs. (23)-(24), (27) and (34)-(35), the righthand sides of the equations of motion (3)
are, to order r3 in the radial equation and order r4 in the axial equation,

ρ(v · ∇)vr ≈ − ρq1

− 2ρrq2 +
σr

2c2
[f ′0B

2 − f0BB′]

− 3ρr2q3 +
σr2

6c2
[2f ′1B

2 − 3f1BB′]
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− 4ρr3q4 +
σr3

16c2
[4f ′2B

2 − 8f2BB′ − 4f ′0BB′′ + f0(BB′′′ + 2B′B′′)], (41)

ρ(v · ∇)vz ≈ − ρq′0
− ρrq′1

− ρr2q′2 +
σr2

4c2
[f ′0BB′ − f0(B

′)2]

− ρr3q′3 +
σr3

12c2
[2f ′1BB′ − 3f1(B

′)2]

− ρr4q′4 +
σr4

32c2
[4f ′2BB′ − 8f2(B

′)2 + 2f0B
′B′′′ − f ′0(BB′′′ + 2B′B′′)].(42)

We now compare eqs. (25)-(26) and (41)-(42) order by order to obtain 9 equations in the
9 unknown functions f0, f1, f2, q0, q1, q2, q3, q4 and R.

0 = q1, (43)

(f ′0)
2 − 2f0f

′′
0 = − 8q2 +

2σ

ρc2
[f ′0B

2 − f0BB′], (44)

3f ′0f
′
1 − 3f1f

′′
0 − 2f0f

′′
1 = − 18q3 +

σ

ρc2
[2f ′1B

2 − 3f1BB′], (45)

18f ′0f
′
2 + 8(f ′1)

2 − 9f0f
′′
2 − 12f1f

′′
1 − 18f2f

′′
0 = − 144q4 +

9σ

4ρc2
[4f ′2B

2 − 8f2BB′ − 4f ′0BB′′

+ f0(BB′′′ + 2B′B′′)], (46)

(f 2
0 )′ = − 2q′0, (47)

f1f
′
0 + 2f0f

′
1 = − 2q′1, (48)

2f1f
′
1 + 3f0f

′
2 = − 3q′2 +

3σ

4ρc2
[f ′0BB′ − f0(B

′)2], (49)

4f2f
′
1 + 9f1f

′
2 = − 12q′3 +

σ

ρc2
[2f ′1BB′ − 3f1(B

′)2], (50)

f2f
′
2 = − 2q′4 +

σr4

16ρc2
[4f ′2BB′ − 8f2(B

′)2 + 2f0B
′B′′′

− f ′0(BB′′′ + 2B′B′′)]. (51)

Not only is q1 = 0 according to eq. (43), but f1 and q3 vanish as well since eqs. (45), (48)
and (50) imply that if f1, f ′1, q3 and q′3 all vanish at some value of z, then they vanish at all
z; and our initial condition is that all of these vanish at z = −∞.

There are now 6 unknown functions, f0, f2, q0, q2, q4 and R, but only 5 of the 9 equations
of motion (43)-(51) remain. In particular, we need a relation for R(z).

A simple and numerically stable relation for the jet radius R follows from the assumption
of incompressibility. Namely, the flux of liquid is constant across any plane of constant z:

Φz =
∫ R

0
vz(r) 2πrdr ≈ πR2f0 +

πR4f2

2
= πR2(−∞)vz(−∞), (52)

using eq. (23). Then,

R2(z) =
−f0 +

√
f 2

0 + 2R2(−∞)vz(−∞)f2

f2

. (53)
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We integrate eq. (47) to find

q0 =
γ

ρR(−∞)
+

1

2
v2

z(−∞)− 1

2
f 2

0 , (54)

noting that the pressure in the jet is only γ/R due to surface tension at z = −∞. Since
q0 = P (0, z)/ρ, we recognize eq. (54) as Bernoulli’s equation, P + ρv2/2 = constant, along
the axis of the jet. This equation is formally consistent with negative pressure, and implies
that the axial velocity will be high if the axial pressure becomes negative.

We do not find a version of Bernoulli’s equation at nonzero radius. Since Joule heating
due to eddy currents occurs at any nonzero radius, we do not expect Bernoulli’s equation,
which represents conservation of mechanical energy, to apply there.

The remaining unknown functions, f0, f2 q2 and q4, will be obtained by numerical inte-
gration. Function f0 will be determined from eq. (44) according to

f ′′0 ≈
(f ′0)

2

2f0

+
4q2

f0

+
σ

ρc2

(
BB′ − f ′0B

2

f0

)
. (55)

Equation (46) determines f ′′2 via

f ′′2 ≈
2f ′0f

′
2

f0

− 2f2f
′′
0

f0

+
16q4

f0

− σ

4ρc2

(
4
f ′2B

2

f0

− 8
f2BB′

f0

− 4
f ′0BB′′

f0

+ BB′′′ + 2B′B′′
)

. (56)

Equation (49) specifies q′2 as

q′2 ≈ −f0f
′
2 +

σ

4ρc2
[f ′0BB′ − f0(B

′)2], (57)

and eq. (51) specifies q′4 as

q′4 ≈ −f2f
′
2

2
+

σ

32ρc2
[4f ′2BB′ − 8f2(B

′)2 + 2f0B
′B′′ − f ′0(BB′′′ + 2B′B′′)]. (58)

We have the option to determine q4 via the pressure boundary condition (28), which now
tells us that

q4R
4 + q2R

2 + q0 =
γ

ρR
, (59)

and so
q4 =

γ

ρR5
− q2

R2
− q0

R4
. (60)

However, this does not appear to stabilize the numerical integration; it seems better to use
eq. (58).

7 Motion in a Semi-Infinite Solenoid

For a physical solenoid of central field B0 and diameter D, the corresponding axial magnetic
field of the semi-infinite solenoid is

Bz(0, z) =
B0

2


1 +

z√
(D/2)2 + z2


 , (61)
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whose derivatives are

B′
z =

dBz(0, z)

dz
=

B0

2

(D/2)2

[(D/2)2 + z2]3/2
, (62)

B′′
z =

d2Bz(0, z)

dz2
= −3B0(D/2)2

2

z

[(D/2)2 + z2]5/2
, (63)

B′′′
z =

d3Bz(0, z)

dz3
= −3B0(D/2)2

2

(D/2)2 − 4z2

[(D/2)2 + z2]7/2
. (64)

As of 12/9/00, the numerical integration of eqs. (55)-(58) appears to imply that the jet
comes to rest at z ≈ −D. That is, it can’t enter the magnet...
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