

A Free Jet Hg Target Operating in a High Magnetic Field Intersecting a High Power Proton Beam

Van Graves, ORNL

P. Spampinato,T. Gabriel, ORNL H. Kirk, N. Simos, T. Tsang, BNL K. McDonald, Princeton P. Titus, MIT A. Fabich, H. Haseroth, J. Lettry, CERN

International Conference on Accelerator Applications 2005

> Venice, Italy August 29 – Sept 1, 2005

Background

- Proof-of-principle experiment to investigate the interaction of a proton beam with a high-Z target (Hg) inside a high-strength magnetic field
- Primary diagnostic for the beam-jet interaction is optical
- Similar to a high-power production target needed for a neutrino factory or muon collider
- Experiment approved by CERN Research Board
 - CERN designation nToF11
 - Collaboration designation MErcury Intense Target (MERIT)
 - Scheduled for April 2007

Participants

- BNL, Princeton project oversight, nozzle development, beam window design, optical diagnostics
- MIT magnet design & fabrication
- ORNL Hg target system design & fabrication
- RAL magnet cryogenics
- CERN proton beam & facility interfaces

Prior Work

• E951 Tests (H.Kirk - BNL)

- 1cm dia, 2.5m/s Hg jet
- 24 GeV 4TP beam
- No magnetic field
- Jet dispersal observed

- 4cm dia, 12m/s Hg jet
- 0,10,20T magnetic field
- No proton beam
- Jet stabilization with increasing field

Experiment Profile

Hg Jet

- 1-cm diameter, 20 m/s, delivered to coincide with magnet peak field
- Required flow rate of 1.57 liter/s

Magnet

- 15 Tesla magnetic field
- Peak field duration ~1 sec
- Magnet cool-down time ~30 minutes
- Environment
 - 24 GeV proton beam, up to 28x10¹² (TP) per 2µs spill
 - 1-atm air environment inside target delivery system primary containment
 - Total integrated dose 10⁴ rads

Geometry

- Hg jet 100 mrad off magnet axis
- Proton beam 67 mrad off magnet axis
- Jet intersects beam at magnet Z=0
- Up to 100 beam pulses for the CERN test delivered in a pulse-on-demand mode

Experiment Layout

- Hg target is a selfcontained module inserted into the magnet bore
- Two containment barriers between the Hg and the tunnel environment

Hg System Schematic

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

7

AccApp05

Mercury Delivery System

- Hydraulically-actuated piston pump delivers Hg to the nozzle
- Hg cylinder 25-cm (10-inch) bore, 38-cm (15-inch) stroke
 - Q = 1.5 liter/s (25 gal/min), piston Vel = 3.0 cm/s (1.2 inch/s)
 - Provides jet duration up to 12s, requires approx 23 liters Hg
- Two drive cylinders 15-cm (6-in) bore, powered by 45 liter/min (12 gal/min), 2.1 MPa (3000psi) pump
- Primary containment SS304L/316L
- Gravity fed from sump tank

Target Module Primary Containment

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

AccApp05

Primary Containment Cross Section

Secondary Containment

- SS and Lexan enclosure around entire primary system
- Contains Hg vapors/leaks, provides access to monitor Hg vapors
- Provides access to optical diagnostics, hydraulics, and sensors
- Incorporates beam windows

Nozzle Tests at Princeton

- R&D setup to test various nozzle configurations with mercury
- Water testing initiated

AccApp05

Magnet Description

- 15-T pulsed solenoid
- 3-segment, layer-wound fabrication
 - Conductor: ½-inch square, cold worked OFHC copper
 - 15-cm warm bore
 - 1-m beam pipe
- LN₂ cooled (80K) between pulses
- For detailed information
 - http://www.psfc.mit.edu/peo ple/titus/#BNL%20Memos

Equipment Decommissioning/Disposal

- The target equipment (and the solenoid) will have neutroninduced activation
- Based on (H. Kirk 9/01/04)
 - 200 pulses
 - 16 x 10¹² protons/pulse (avg.)
 - 30 days of operation
 - Contact dose rate on the iron exterior will be:
 - after 1 hr 40 mrad/hr
 - after 1 day 21 mrad/hr
 - after 1 week 13 mrad/hr
 - after 1 mo. 5 mrad/hr
 - after 1 year 1 mrad/hr
- Move experiment out of beam line several days after conclusion
- Extract Hg & prepare for shipment after several month cooldown
- ORNL will take back the Hg target system and the activated Hg and components

Test Plan	Heutrino Factor
Magnet testing at MIT	Oct - Dec ⁴ on Collider 2005
Hg nozzle tests at Princeton –Iterate nozzle design as needed	Oct - Dec 2005
Hg target system testing at ORNL -Includes optical diagnostics -Initially test with water to develop syringe control system -Incorporate Princeton nozzle design, iterate if necessary -Practice Hg fill and extraction -Hg jet characterized	April - June 2006
Integrated test at MIT -Practice CERN installation sequence -Hg jet in magnetic field characterized	Aug - Sept 2006
Ship system to CERN	Nov 2006
Experiment scheduled at CERN	April 2007
Prepare Hg system for shipment to ORNL for decommissioning	Fall 2007

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

AccApp05

Status

Magnet

- Assembly nearing completion
- Hg target system
 - Syringe procurement specification completed
 - Expect to award fabrication contract in Oct 2005
 - Estimate delivery to ORNL Feb 2006
 - Remainder of system design complete Oct 2005
 - Fabrication & delivery to coincide with syringe scheduled delivery

Optical diagnostics

- Most components have been selected
- Investigating rad-hard fiber bundles

• CERN

- Facility interfaces being defined
- Preparations being made for magnet power supply installation

