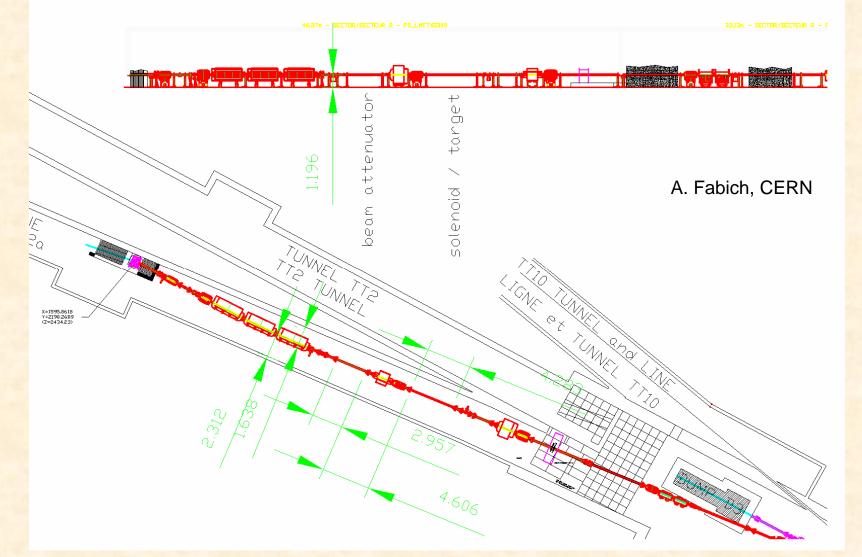


High Power Hg Target Conceptual Design Review

Hg Target System Controls

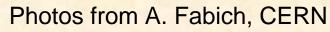
V.B. Graves P.T. Spampinato T.A. Gabriel


Oak Ridge National Laboratory February 7-8, 2005

Outline

- Operating environment
- Requirements / constraints
- Power requirements
- Instrumentation
- Preliminary control system scheme
- Issues

CERN Tunnel Plan View



OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

TT2A Photos

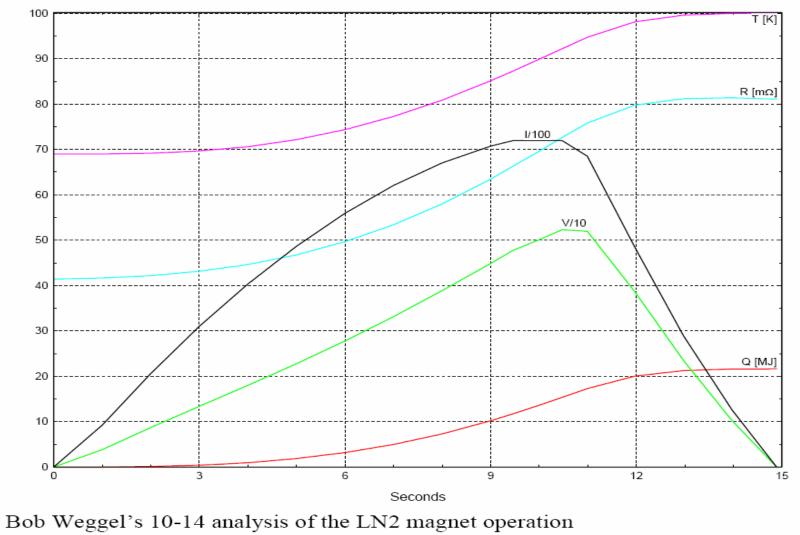
OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Conceptual Design Review 7-8 Feb 05

UT-BATTELLE

Control System Requirements & Constraints

- No existing power available in tunnel
- Power system mounted on hydraulic pump reservoir
- Operator controls 60m away


 Will require some level of communication with other control systems (solenoid, beam, diagnostics)

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Magnet Operational Cycle

Parameters of Pulse Coil Precooled to 69 K and Energized at 600 V to 7200 A

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY UT-BATTELLE

Operating Scenario

	Solenoid **				
Time	Cryogenics	Power	Target Pump	Proton Beam	Optical
(sec.)		Supply	System	14	Diagnostic
minus 30	Magnet full of	Standby	Fill Hg supply	Call for beam	Off
	LN ₂ @ 80°K		line		
minus 10	Purge LN ₂ with	Standby	Standby	Wait for beam	Standby
	gaseous He			5.5 2 11 3	
0 to 9.5	Magnet full of	Start ramp	Ramp Hg to full	Wait for beam	Standby
	He gas	to full	flow		
	· · · · · · · · · · · · · · · · · · ·	current		141-11-11-11	
8 to 9.0	Magnet full of	Ramping to	Steady state Hg	Wait for beam	Turn on laser
	He gas	full current	jet		lighting
9.5 to	Magnet full of	At full	Steady state Hg	24 GeV, 1 MW	Operate high
10.5	He gas	current	jet		speed camera
10.5 to	Magnet full of	Begin de-	Shut down	Standby	Turn off laser
11.0	He gas	energizing	syringe pump		light and
				111111111	camera
11.0 to	Magnet full of	De-energize	Standby	Standby	Off
15.0	He gas	to zero			
15.0 to	Fill magnet with	Cool down	Refill syringe	Standby	Off
1800.0*	LN ₂ @ 80°K	to ~80°K	cylinder		

* Assumes a 30-minute dwell period.

** Solenoid power supply is in "Standby" for zero-field operation.

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Power Requirements

- Hydraulic pump 460VAC, 50-60Hz, 60A
- Proportional control valve 24VDC
- Heater foil 120VAC
- Hg vapor monitor 120VAC
- Instruments 24VDC

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Instrumentation & Sensors

- Cylinder position sensor
- Hg level sensor
- Thermocouple
- Hg vapor monitor

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Proportional Directional Control Valve

Bosch Rexroth 4WREE

- Operating pressure: up to 3000psi (210 bar)
- Nominal flow: 8.45gpm (32 l/min)
- Sensitivity: <= 0.05% (equates to 0.003 m/sec nozzle velocity)
- Supply voltage: +24VDC
- Command signal: ±10VDC

Position Sensor

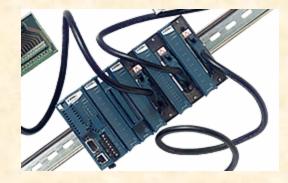
- Temposonics G-series linear position sensor
 - Measured variable: displacement
 - Measuring range: 2-100in
 - Repeatability: 0.001% full stroke
 - Output: voltage or current
 - Update time: <1ms</p>
 - Supply voltage: +24VDC

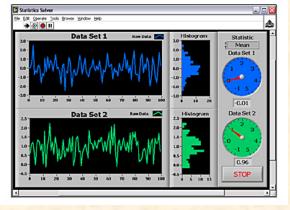
Hg Level Sensor

- Omega Instruments LVR50-PP two wire liquid level float transmitter
 - Accuracy: 0.25" over span in water
 - Specific gravity: 0.75 minimum
 - Supply voltage: 10-40 Vdc
 - Signal output: 4-20mA
 - Stainless steel construction, choice of head materials
- This particular instrument is too long, but is indicative of a simple Hg level sensor

Hg Vapor Monitor

Specifications


- Resolution 0.001 mg/m3
- Detection range 0.003-0.999 mg/m3
- Accuracy ± 5% at 0.100 mg/m3
- Response Time13 s in sample mode; minimum auto sample time 5 min
- Flow rate 750 cc/min
- Power requirements100-120 V ~ 50/60 Hz, 1A



Preliminary Control System Scheme

- Remote control over long distance limits choices
 - Analog I/O modules need to be close to equipment and power supplies
- PLC may be adequate, investigating capabilities and functionality over required distance

- LabView controller on laptop computer is suggested
 - National Instruments recommends CompactPCI I/O modules
 - Communicates to laptop via EtherNet cable
 - Allows custom operator interface, data logging if required during development
 - Should allow straightforward integration with other control systems

Issues

- No technical control issues noted at this time
- Many details to be worked out
- Analysis needed to develop control system hierarchy

