

MERIT Hg System Design

V.B. Graves P.T. Spampinato T.A. Gabriel

MERIT Review Meeting Brookhaven National Laboratory Dec 12, 2005

> OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY

Outline

- Requirements & layout
- Hg delivery system description
 - Syringe pump
 - Primary/secondary containment
 - Beam windows
 - Optical diagnostics
 - Sensor & controls
- Installation
- Cost & schedule

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Reqmts and Operating Conditions:

Target system must deliver a stable,Munconstrained jet of Hg into a 15 Tesla field

- 1-cm diameter jet at 20 m/s delivered every 30 minutes
 Q=1.6liter/s, Re~10⁶
- >1-sec steady state jet during the magnet peak field
- Baseline Hg environment is 1-atm air, also considering running in rough vacuum
- Full-beam interaction length is 30-cm
- Beam line is 120-cm (47.2") above the tunnel floor
- Up to 100 pulses for the CERN test, >500 operating cycles for system testing
- The pump equipment operates in a range of 6000 Gauss to 300 Gauss (1 Tesla = 10⁴ Gauss)

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Experiment Layout

- Hg target is a self-contained module inserted into the magnet bore
- Two containment barriers between the Hg and the tunnel environment

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

MERIT Side View

Geometry of the Interaction Region MERIT Target Baseline Configuration 23 Nov 2005

- Horizontal proton beam
- Magnet axis to beam is 67 milliradians
- Jet to beam is 33 milliradians
 Recent change: Jet now starts above beam
- The jet centerline crosses the beam center at Z=0 (center of the solenoid)
- 7 milliradian horizontal beam kick

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

MERIT Review 12 Dec 2005

Muon Callabaration

Hg Delivery System

- Capacity 23liters Hg (~760 lbs)
- Provides 1cm dia, 20m/s jet for up to 12 sec
- Secondary containment box approximately 1m x 1m x 1.5m
- Estimated weight 2T with Hg

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg Syringe Performance

- Hg flow rate 1.6liter/s (24.9gpm)
- Piston velocity
 3.0cm/s
 (1.2in/sec)
- Up to 103 bar (1500 psi) Hg pressure in cylinder
- Hg cylinder force 525kN (118kip)

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Syringe Procurement

- Awarded to Airline Hydraulics (HQ Bensalem, PA)
- Complete system design based on specified requirements
- Piston pump (inside secondary containment)
 - One 10-inch Hg Pump Cylinder
 - Two 6-inch Drive Cylinders with integrated position sensors
 - Tie beam
 - Hydraulic hoses inside secondary for operating Drive Cylinders
- Hydraulic pump (outside secondary containment)
 - Pump, motor, reservoir
 - Proportional, directional control valve
 - Hydraulic hoses between pump & secondary containment
 - Motor controller
 - Variable voltage transformer for U.S. and European operation
- Hydraulic fluid (drum)
- Integration of system components
- System testing with water
- Expected delivery Feb/Mar 2006

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Original Concept

From Vendor

Primary Containment

- Hg supply flow path
 - 1-inch Sch 40 pipe
 - 1-inch flex metal hose w/sanitary fittings
 - 1-inch, 0.065-wall rigid tubing
 - 12mm-dia, 1mm-wall rigid tubing

- Hg jet return path
 - 1/4-inch plate weldment chamber
 - 6-inch to 2-1/2-inch eccentric reducer
 - 2-1/2-inch flex metal hose w/sanitary fittings
 - Sump tank

Secondary Containment

- SS304L/316L 1/2" bottom plate, 1/4" sides
- Flexible sleeve (non-metallic, combustibility issue)
- SS304L/316L cylindrical sleeve (13ga, 0.089")
- Passive filtration
 - Filtered inlet and outlet, normally capped
- Final sizing to be completed once models from syringe vendor received

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Secondary Containment Ports

- Optical diagnostics
- Instrumentation
- Hydraulics
- Hg drain & fill (without opening secondary)
- Hg extraction (in event of major leak in primary containment)
- Two filtered ventilation ports

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Beam Windows

- Currently have a simple, flexible beam window concept fabricated from titanium alloy
- Welded attachments provide more usable space for beam
- Single windows for primary containment, double windows for secondary
- Pressurize or evacuate secondary windows, monitor to detect failure

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Optical Viewports

- 100mm-dia, 6mm-thick sapphire disks
- Face seals
- Mechanical fasteners
- One set of windows configured for reflector assemblies

Viewport Assemblies

Reflector Assemblies Mounted on Viewports

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Optical Components

 BNL to provide splitters, prisms, lenses, bracket, mounting hardware & adjustment mechanisms

Z=0 Section Cut

Common Baseplate

- Supports both magnet and Hg system
 O/A length 3.15m (124")
- Rollers used to grossly align solenoid to beam
- Provides lateral movement of solenoid for alignment to beam once rollers removed

Installation Sequence

Transport Hg System

Remove Rollers, Level Magnet

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Roll Hg System into Magnet

Add Rollers

LabView-Based Control System

- Remote control over long distance limited choices
 - Analog I/O modules need to be close to equipment and power supplies
- LabView controller on laptop computer was chosen
 - National Instruments recommends CompactPCI I/O modules
 - Communicates to laptop via EtherNet cable
 - Custom operator interface will be develop
 - Should allow straightforward integration with other control systems

Instrumentation & Sensors

Controlled Components			
Hydraulic pump	Proportional control valve*	Heater foil	
Analog Sensor Inputs			
Hg discharge pressure	Hg level	Hg sump thermocouple	Secondary containment thermocouple
Cylinder 1 position*	Cylinder 2 position	Hg vapor 1	Hg vapor 2
Hydraulic fluid high pressure	Hydraulic fluid low pressure	Beam window 1 pressure*	Beam window 2 pressure*
Digital Sensor Inputs			
Hydraulic filter dirty switch	Hydraulic low level switch	Conductivity probe	

* Critical for system operation or safety OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg System Costs

• Syringe ~\$80K

- Remaining BNL procurement estimates
 - Fabricated item cost estimates from ORNL fabrication expert (hopefully conservative)
 - Common baseplate (\$22K)
 - Target transporter (\$5K)
 - Target cart (\$3K)
 - Primary containment (\$12K)
 - Secondary containment (\$14K)
 - Miscellaneous equipment incl. jacks, Hilman rollers (\$3K)
 - Total \$60K
- Additional ORNL funding needed for "toolbox" that will travel with equipment to MIT/CERN (includes PPE/safety equipment, etc), also covers costs for some modifications to Hg system uncovered during ORNL testing
 - Requested \$10K
- Crating / shipping costs to transport system to/from MIT
 - Requested \$10K

Schedule - Major Milestones

Highlights

- Solenoid Tests at MIT Jan '06
- Target Tests at ORNL May-Aug '06
- Integrated Tests at MIT Sep-Oct '06
 - Retest, if needed Nov '06
- Beam Tests at CERN Apr '07
 - Retest, if needed Jun '07

Conclusions

- Final design details of Hg system must be completed
 - Nozzle details (position, orientation, length, etc.)
 - Some changes may be required based on Princeton Hg testing
- Fabrication drawings must be completed soon so procurement process can begin
 - Baseplate design complete, drawings to be ready by end of year
 - Secondary containment drawings can be finalized now that syringe dimensions are known

Backup Slides

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Experiment at CERN

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Containment Schematic

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg Syringe System

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Flow Simulation Using AFT Fathom

- System diagram for Hg flow
- Results indicate maximum pressure requirement of ~780 psi (50 bar) for baseline plenum/nozzle configuration
- Original system design for max Hg pressure of 1000 psig (70 bar)

Other Fathom Simulations

- 1/2" tubing bend

 Cylinder pressure 1200 psi (83 bar)
- No-bend short 1/2" tube
 Cylinder pressure 710 psi (48 bar)
- 1" tubing bend

 Cylinder pressure 780 psi (54 bar)
- All 1/2" tubing from end of flex metal hose, no plenum

 Cylinder pressure 1910 psi (130 bar)
- No MHD effects included
- Changed system design pressure to 1500 psi (100 bar)

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Secondary Containment Monitoring and Filtering

- Two Hg vapor monitors for secondary volume
- Passive filtration with shutoff, can connect to active filtration system
 - Will have single cartridge rather than respirators
- Third vapor monitor for passive filter exhaust and/or tunnel monitoring
- Investigating whether monitors can be moved away from experiment

Normal Syringe Operations

- Slowly extend cylinder to fill Hg cylinder from sump
- Slowly retract cylinder to starting position & pre-fill Hg supply piping, wait for trigger
- Some time after trigger is received, ramp cylinder to full speed
- Steady-state jet for 1sec
- Ramp cylinder to zero velocity
 - Sudden stop can cause flow separation & Hg hammer

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Current Toolbox List

List of Miscellaneous Support Equipment for the Target System

Large Items	Small Items	
Vacuum Cleaner	Merc-X Cleaning Solution	
Portable Snorkel	Sponges	
Spare Filters (qty. TBD)	Plastic Buckets	
Glove Box ??	Plastic Pans	
Vacuum Pump ??	Gauze – roll	
2 Vapor Monitors	Small Tools	
Vapor Monitor Calibration Kit	Vinyl Tape	
	Herculite	
	Plastic Bags – asst'd (1 gal. – 20 gal.)	
	1-Liter Plastic Bottles	
Hydraulic Fluid – 55 gal. Drum	Lab Coats	
	Shoe Covers	
	Safety Glasses	
	Tyvek Hooded Suits	
	Nitrile Gloves	
	Full Face Mask/Respirator Cartridges	

