

MERIT Hg System Reconfiguration Concept

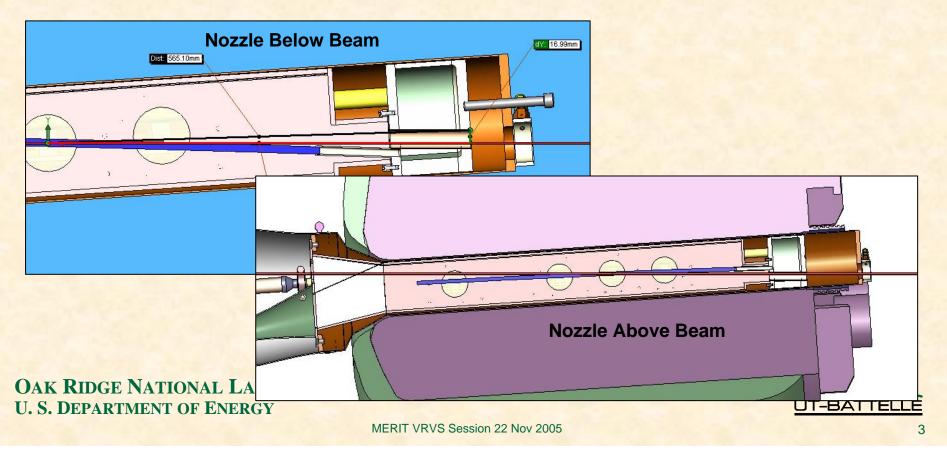
V.B. Graves P.T. Spampinato T.A. Gabriel

MERIT VRVS Session Nov 23, 2005

> OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY

Princeton Collaboration Mtg Nov 17

 Two issues discussed have impact on Hg delivery system design


- Hg jet distortion in field appears to be real and a significant problem
 - Decision made to decrease angle between Hg jet and magnet axis from 100 mrad to 33 mrad
 - This moves nozzle above the beam
- Cost has become more of an issue as actual hardware quotations are received

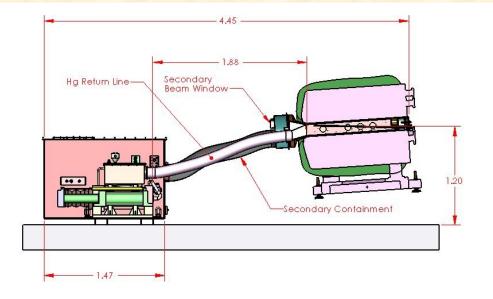
Nozzle Relocation

- Nozzle above beam is more inline with magnet axis
- Magnet tilt angle cannot be decreased during experiment because nozzle would move into beam

Design Ramifications

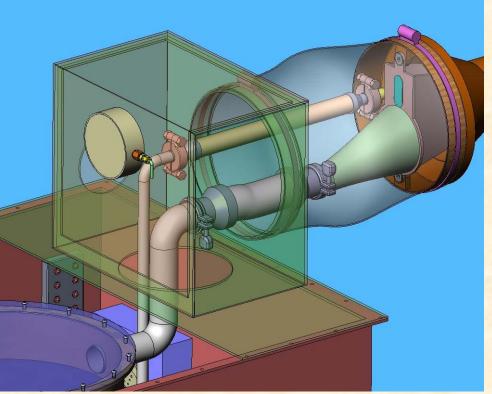
- Need for deflector not as apparent
 - Might be reconfigured or eliminated
- Plenum no longer a preferred solution
 - Maneuvering Hg around beam no longer an issue
 - Have room to make turn at end of magnet and have long run in same direction as beam
 - Non-plenum approach requires increased pressure at Hg cylinder
- Half-plenum could be considered
- Still require that replaceable nozzle be incorporated

Hg System Costs


- Syringe ~\$80K
- Remaining fabricated item cost estimates from ORNL fabrication expert
 - Common baseplate (\$22K)
 - Target transporter (\$5K)
 - Target cart (\$3K)
 - Primary containment (\$12K)
 - Secondary containment (\$14K)
- Consideration being given to eliminate / minimize baseplate & transporter costs

Common Baseplate Can Be Eliminated

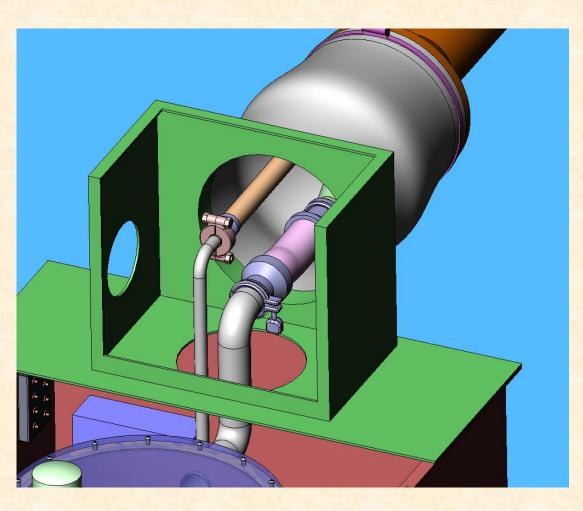
- Approach initially considered during analysis of attractive forces between steel cylinders and magnet
- Separating systems alleviated force issue but introduced other handling & transport issues


OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

New Approach

- Increase length of flexible tubing but minimize separation distance
- Reconfigure secondary containment so Hg supply & return lines exit out the top rather than the front
- Move secondary downstream beam window

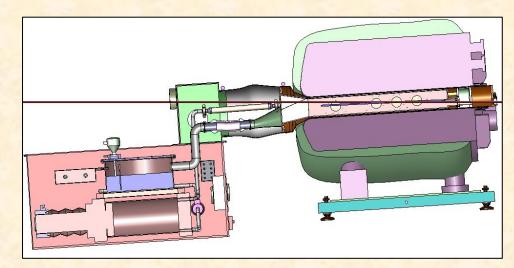
OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY



Syringe Assembly Sequence

- Lower cylinder assembly into box
 - Assembly does not include flexible hoses
- Lower secondary cover box over cylinder discharge piping
- While supporting weight, attach primary containment target module (incl. flex hoses)
- While supporting weight, slide secondary containment sleeve over target module
- Pass optic fibers through side hole in cover box
- Install back/top of cover box (with beam window)

New Concept Has Its Own Issues


- Common baseplate eliminated need for built-in tilt adjustment of Hg system
 - New Hg system transporter requires rolling, elevating, tilting, and locking features
- Support for target module will be an issue
- Secondary downstream beam window must be very large to accommodate non-precise tilt of Hg system
 - Might have to increase window thickness to withstand vacuum/pressure monitoring
- Slightly increased pressure drop due to longer piping
- Longer supply piping means slightly decreased max jet duration (<1/4sec change)
- Magnet will require its own transport, alignment, and support features

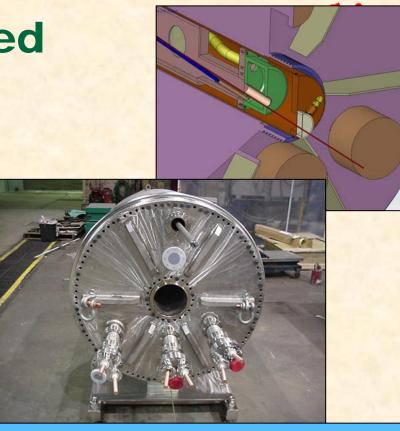
OAK RIDGE NATIONAL LABORATORY

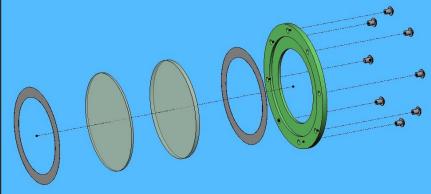
U. S. DEPARTMENT OF ENERGY

Current Baseline

New Concept (Syringe May Be Less Tilted)

Preliminary Installation Sequence With New Concept


- Grossly align magnet axis with vertical plane containing beam
- Elevate magnet so axis is parallel to floor and just below beam elevation
 - Perform fine lateral alignment of magnet
- Roll Hg system into position, removing support as target module enters magnet bore
- Raise upbeam end of magnet until Z=0 is in beamline
 - Must also adjust tilt/elevation of Hg system


OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Other Issues Discussed

- Decided to not pursue in-situ nozzle replacement
 - Proposed MIT testing
 - Conduct integrated tests with level baseplate until nozzle finalized
 - Changeouts better controlled, less risk of Hg spill if Hg system extracted from magnet
 - Tilt baseplate for final tests
- Proposing to use sapphire optical windows instead of silica/lexan
 - Mechanical properties of sapphire exceed those of fused silica
 - Princeton to conduct impact tests on sapphire disks

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Conclusions

 Nozzle relocation will necessitate some fairly detailed design changes

- Moving away from plenum concept
- Fabrication costs dictating further design review
 - New delivery system concept eliminates some major fabrication expense
 - More design required
 - Additional cost to magnet system required
 - Should this become baseline approach?

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

