u(y)
ug =5 mfs
y=R
}l
gl
r=R=7cm Fig. E63

This is a very small shear stress, but it will cause a large pressure drop in a long pipe
{170 Pa for every 100 m of pipe).

(¢c) The average velocity V is found b
distribution

y integrating the logarithmic-law velocity

_e_ L
V== -[o ular dr 2)

(yu*/v) + B] from Eq. (6.21) and noting that y = R — r, we can

Introducing u = w*{1/x In
2), which is rather laborious. The final result is

carry out the integration of Eq. (

¥ = 0.8351, = 4.17 m/s Ans. (€)

We shall not bother showing the integration here because it is all worked out and a very

neat formula is given in Egs. (6.49) and (6.59).

Notice that we started from almost nothing {the pipe diameter and the centerline veloc-
ity) and found the answers without solving the differential equations of continvity and
momentum. We just used the logarithmic-law, Eq. (6.21), which makes the differential
equations unnccessary for pipe flow. This is a powerful technique, but you should remem-
ber that all we are doing is using an experimental velocity correlation to approximate the

actual solution to the problem.
We should check the Reynolds number to ensure turbulent flow

_vd (@17 mfs)01d m)
Ca= "y TSI x 1075 mifs = 38,700

Since this is greater than 4000, the flow is definitely turbulent.

6.4 FLOW IN A CIRCULAR PIPE

As our first example of a specific viscous-flow analysis, we take the classic problem
of flow in a full pipe, driven either by pressure or by gravity or both. Figure 6.10
shows the geometry of the pipe of radius R. The x axis is taken in the flow
direction and is inclined to the horizontal at an angle .

Before proceeding with a solution to the equations of motion, we can learn a lot
by making a control-volume analysis of the flow between sections { and 2 in Fig,
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Fig.6.10 Control volume of steady fully developed flow between two sections in an inclined
pipe.

6.10. The continuity relation, Eq. (3.23), reduces to

Q; = (@, = const

0y 0.
o V=== =V, ==2% 6.23
' ! Ay ’ A, ( )

since the pipe is of constant area. The steady-flow energy equation (3.85) reduces
to

%+%oc1¥f§‘+gzI z% + 302 V3 -+ gzy + ghy (6.24)

since there are no shaft-work or heat-transfer effects. Now assume that the flow is
fully developed (Fig. 6.6) and correct later for entrance effects. Then the kinetic-
energy -correction factor «, = o, and, since V; = I, from (6.23), Eq. (6.24) now
reduces to a simple expression for the friction-head loss i r

}1I:(21+ﬂ)m(z2+&)=zﬁ(z+p)mAz%-éE {6.25)
Py Py Py rg
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The pipe-head loss equals the change in the sum of pressure and gravity head, i.c,,
the change in height of the FIGL. Since the velocity head is constant through the
pipe, i, also equals the height change of the EGL. Recall from Fig. 3.17 that the
EGL decreases downstream in a flow with losses unless it passes through an
energy source, €.g,, as a pump or heat exchanger.

Finally apply the momentum relation {3.40) to the control volume in Fig. 6.10,
accounting for applied forces due to pressure, gravity, and shear

Ap nR? + pg(nR?) AL sin ¢ — 1,{2rR) AL = im(V; — V;) =0 (6.26)

This equation relates /i, to the wall shear stress

A
Az + 22 = Zry AL
Pg pg R
where we have substituted Az = AL sin ¢ from Fig. 6.10.
So far we have not assumed either laminar or turbulent flow. If we can correlate
1,, with flow conditions, we have resolved the problem of head loss in pipe flow.

Functionally, we can assume that

(6.27)

1, = Fp, V, t, d, €) (6.28)
where ¢ is the wall-roughness height. Then dimensional analysis tells us that
81, €

The dimensionless parameter f is called the Darcy friction factor, after Henry
Darcy (1803-1858), a French engineer whose pipe-flow experiments in 1857 first
established the effect of roughness on pipe resistance.

Combining Egs. (6.27) and (6.25), we obtain the desired expression for finding
pipe-head loss

LV?
hy=f 729 (6.30)

This is the Darcy-Weisbach equation, valid for duct flows of any cross section and
for laminar and turbulent flow. It was proposed by Julius Weisbach, a German
professor who in 1850 published the first modern textbook on hydrodynamics.

Our only remaining problem is to find the form of the function F in Eq. (6.29)
and plot it in the Moody chart of Fig. 6.13.

Equations of Motion
For either laminar or turbulent flow the continuity equation in cylindrical coordi-

nates is given by {Appendix E)

14 10 cu : ,
Loy o)+ g ) 5 =0 (6.31)
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We assume that there is no swirl or circumferential variation, vy = d/66 = 0, and
fully developed flow: 1 = u(r) only. Then Eq. (6.31) reduces to

1é
o (ro)=0
or rv, = const (6.32)

But at the wall, » = R, v, = 0 (no slip); therefore (6.32) implies that v, = 0 every-
where. Thus in fully developed flow there is only one velocity component, u = ufr).
The momentum differential equation in cylindrical coordinates now reduces to

ou  d 1o
pu 5= —d—i +0gx + - = (1) ‘ (6.33)

where t can represent either laminar or turbulent shear. But the left-hand side
vanishes because u = u(r) only. Rearrange, noting from Fig. 6.10 that G = g sin ¢

12 d . d
o (rt) = T {p — pgx sin ¢) = T (p + pgz) (6.34)

Since the left-hand side varies only with r and the right-hand side varies only with
x, it follows that both sides must be equal to the same constant.! Therefore we can
integrate Eq. (6.34) to find the shear distribution across the pipe, utilizing the fact
that t=0atr=0

T=4r é—i— {p + pgz) = (const)(r) {6.35)

Thus the shear varies linearly from the centerline to the wall, for either laminar or
turbulent flow. This is also shown in Fig. 6.10. At r = R, we have the wall shear
Ap + pg Az

B = 3R =

(6.36)
which is identical with our momentum relation (6.27). We can now complete our
study of pipe flow by applying either laminar or turbulent assumptions to fill out
Eq. (6.35). -

Laminar-Flow Solution
Note in Eq. (6.35) that the HGL slope d(p + pgz)/dx is negative because both
pressure and height drop with x. For laminar flow, t = p du/dr, which we substi-
tute in Eq. (6.35)

du

d
Hog =K K= (p+pge) (637)

! Ask your instructor to explain this to you il necessary.
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Integrate once

y = 12 —f— +C, (6.38)

The constant C, is evaluated from the no-slip condition at the wall: 1 = Qatr=R
K

0=1R? i + Cy (6.39)

1R?*K/n. Introduce into Eq. (6.38) to obtain the exact solution for

or Cl = =
. laminar fully developed pipe flow
u_ml— ﬁi( + pgz} (R® —r?) (6.40)
T dp | odx P p ’

The laminar-fiow profile is thus a paraboloid falling to zero at the wall and

reaching a maximum at the axis

R? d
Hiypax = ?’I [_;H (p + pgz)] (641)

[t resembles the sketch of u(r) given in Fig. 6.10.

The laminar distribution {6.40) is called H agen-Poiseuille flow to commemorate
the experimental work of G. Hagen in 1839 and J. L. Poiseuille in 1840, both of
whom established the pressure-drop law, Eq. (6.1). The first theoretical derivation
of Eq. (6.40) was given independently by E. Hagenbach and by F. Neumann

around 1859.
Other pipe-flow results follow immediately from Eq. (6.40). The volume flux is

. R 2
Q= j udAd= Jo' umax(l - F) 2nr dr
aR*

d
= %”maanz = _g"; [_E (p + ng)] (642)

Thus the average velocity in laminar flow is one-half the maximum velocity

. ,_Q2_0

;i' nR2 = 5l ' (643)

For a horizontal tube {Az = 0), Eq. (6.42) is of the form predicted by Hagen’s
experiment, Eq. (6.1)

o Rulg - |
[ AP=TRe (6:44)
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The wall shear is computed from the walt velocity gradient

du 2;111 ; '
= I'HG'( — R _ ,
wen G =T iR o+ ) (645)
This gives an exact theory for laminar Darcy friction factor
8t  8(8uV/d) 64u
f=om < SRR DR
pV pV pWd
64
or ﬁam = R—ed (6'46)

This is plotted in the Moody chart, Fig. 6.13. The fact that { drops off with
increasing Re, should not mislead us into thinking that shear decreases with
velocity: Eq. (6.45) clearly shows that 1,, is proportional to u,,, and, interestingly,
independent of density because the fluid acceleration is zero.

The laminar head loss follows from Eq. (6 30)

/h G4 LV2 3LV 128;:LQ \
e Tyl d 2g pgd?  npgd® ‘

i

) - (647)

— e I

We see that laminar head loss is proportlonal to V.

EXAMPLE 6.4 An oil with p = 900 kg/m? and v = 0.0002 mz,fs flows upward through an
inclined pipe as shown. The pressure and elevation are known at sections 1 and 2, 10 m
apart. Assuming steady laminar flow, (a) verify that the flow is up, (b} compute /i, between 1
and 2, and compute (¢} Q, {d) V, and (e) Re,. [s the flow really laminar?

solution (@) For later use, calculate

i= py = (900 kg/m*)0.0002 m?/s) = 0.18 kg/(m - s)
25 = AL sin 40° = (10 m){0.643) = 643 m

Py = 250,000 Pa

py = 350,000 Pa,z; =0

Fig. E6.4
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The flow goes in the direction of falling HGL; therefore compute the grade-line height at
each section ‘

_ P 350,000
P2 250,000
= £ mpd3 +— o =345
HGIL, =z, + g 6.43 + 500(0.807) 3 m
. The HGL is lower at section 2; hence the flow is from 1 to 2 as assumed, Ans. (a)
(b) The head loss is the change in HGL height :
h;=HGL, - HGL, = 35.65 m — 3475 m=49m Ans. (b)

Half the length of the pipe is quite a large head ioss.
(c) We can compute @ from various laminar-flow formulas, notably Eq. {6.47)

_ npgd*h; _ m(900)(9.807)(0.06)*(4.9) _
@="gur — 128018)10) 0.0076 m*/s Ans. {c)

{d) Divide Q by the pipe area to get the average velocity

V= Q _ 00076 _ 2.7 m/s Ans. (d)

aR? ~ n{0.03)
() With ¥ known, the Reynolds number is

Re, = V4 - 2.7(0.06)

. 50002 = 810 Ans. (e)

This is well below the transition value Re, = 2300, and so we are fairly certain the flow is

laminar.
Notice that by sticking entirely to consistent SI units {meters, seconds, kilograms, new-

tons) for all variables, no conversion factors whatever are needed in the calculations.

EXAMPLE 6.5 A liquid of specific weight pg = 58 1b/lt® flows by gravity through a I-{t
tank and & 1-ft capillary tube at a rate of 0.15 ft3/h, as shown. Sections f and 2 are at
atmospheric pressure. Neglecting entrance effects, compute the viscosity of the liquid in

slugs per foot-second.

solution Apply the steady-flow energy equation {3.86) with no heat transfer or shaft work

Pi Vi! (Pz V% )
Ay =2+ 2 +n)+h
pg 29" T T \pg T2g T T

But p; = py = p,, and ¥ is riegligible. Therefore, approximately,

V3 Vi
hj—=zt—22—2—;:2f——2—§ 3]
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But V; can be computed from the knowr volume flux and pipe diameter

Q0 0.15/3600 (Cfs

Y, == PPV
2T IRT = Tpoooany RS
Substitution into Eq. {1) gives the net head loss
(3.32)2
hy 2027) 183 ft )

Note that &, includes the entire 2-ft drop through the system and not just the 1 ft of
capillary pipe length. _
Up to this point we have not specified laminar or turbulent flow. For laminar flow with

negligible entrance loss, the head loss is given by Eq. {6.47)

R2pLY  32u(1.0 1)(3.32 ft/s)

183 ft = - — 114,500
hy= 1830 =" = 58 1oe)0.004 i)? "
or "= _183 1.60 x 107* stug/(ft - 5) Ans.
114,500 -

Note that L in this formula is the pipe length of 1 ft. Check the Reynolds number to see
whether it is really laminar flow

pg 380 3
¢ "322 " 1.80 shugs/ft
pVd  (1.80){3.32)(0.004) .
= = A T e O 8
Re, p 160 x 103 1500 laminar

Since this is less than 2300, we seem to venfy that the flow is laminar. Actua]Ey, we may be
quite wrong, as Example 6.8 will show.
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