Neutrino Factory Mercury Vessel: Initial Cooling Calculations

V. Graves

Target Studies

Nov 15, 2012

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Target System Review

- Current mechanical concept incorporates independent mercury and shielding modules
- Separates functionality, provides double mercury containment, simplifies design and remote handling
- Each vessel assumed to be cooled with Helium
 - Shielding vessel filled with tungsten beads
 - Mercury vessel cooling chambers empty
- Purpose: take an initial look at the cooling issues

National Laboratory

Helium Properties @ 20C

Property	Value	Unit
Density (ρ)	0.16674	kg/m^3
Dynamic Viscosity (μ)	1.9561E-5	kg/m-s
Kinematic Viscosity (v)	1.1731E-4	m^2/s
Specific heat (Cp)	5193	J/kg-K
Conductivity (k)	0.14786	W/m-K
Prandtl number	0.68700	
Thermal Diffusivity (κ)	1.7120E-4	m^2/s
Thermal Expansion Coefficient (α)	3.4112E-3	1/K

http://www.mhtl.uwaterloo.ca/old/onlinetools/airprop/airprop.html

Analysis Model Simplification

- First-order cooling analysis based on simplified geometry model
- Break inner and outer regions into supply/return channels of equal areas within each region

Helium Mass Flow Rates

 $q = \dot{m}C_p \Delta T$

- Assumptions
 - $q_t = 1.5 MW$
 - $q_{m} = 0.5 MW$
 - $\rho = 0.16674 \text{ kg/m^3}$
 - $C_{p} = 5193 \text{ J/kg-K}$
 - Helium ΔT <= 100C</p>
 - Helium velocity <= 100 m/s</p>

$$\dot{m}_t = \frac{1.5E6}{5193*100} \approx 3 \, kg \, / \, s$$

$$\dot{m}_m = \frac{0.5E6}{5193*100} \approx 1 \, kg \, / \, s$$

5 Managed by UT-Battelle for the U.S. Department of Energy

1kgHe @ STP = 6 m^3

T2K Target Design

- Required flow rate 32 g/s
- Minimize dP (max 0.8 bar) due to high flow rate (avg = 200 m/s)

6 Managed by UT-Battelle for the U.S. Department of Energy

Cooling Calculations 15 Nov 2012

Mercury Vessel Calculations

- Mercury cooling chamber empty (only Helium)
- Assume 4 cooling paths (8 chambers)

$$\dot{m} = \frac{\dot{m}_m}{4} = 0.25 \, kg \, / \, s$$
$$A = \frac{\dot{m}}{\rho V} = \frac{0.25}{0.16674 \times 100} = 0.015 m^2$$
$$8A = 0.12 m^2$$
$$A_i = 0.1m^2$$

Helium Supply Channels - Blue

Helium Return Channels - Red

- Area may be adequate, but asymmetric heating may be problem
- Pressure drop through system needs to be calculated

Tungsten Shielding Vessel Calculations

- Shielding vessel cooling chamber not empty (Tungsten spheres)
- Assume 4 cooling paths (8 chambers)

$$\dot{m} = \frac{\dot{m}_{t}}{4} = 0.75 \, kg \, / \, s$$
$$A = \frac{\dot{m}}{\rho V} = \frac{0.75}{0.16674 \times 100} = 0.045 m^{2}$$
$$8A = 0.36 m^{2}$$
$$A_{o} = 3.6 m^{2}$$

- Area adequate, may reduce helium velocity
- Pressure drop through spheres must be reviewed

Tungsten Shielding Vessel Pressure Drop

 Ergun Equation gives pressure drop through fixed beds of uniformly sized solids

$$\frac{\Delta P}{L} = \left(\frac{\Delta P}{L}\right)_{viscous} + \left(\frac{\Delta P}{L}\right)_{kinetic}$$
$$\frac{\Delta P}{L} = 150 \frac{\left(1 - \varepsilon\right)^2}{\varepsilon^3} \frac{\mu u_0}{\left(\phi_s d_p\right)^2} + 1.75 \frac{1 - \varepsilon}{\varepsilon^3} \frac{\rho u_0^2}{\phi_s d_p}$$

 $\Delta P = pressure \ drop$ $L = bed \ length$ $\mu = fluid \ viscosity$ $\varepsilon = particle \ void \ fraction$ $u_0 = superficial \ fluid \ velocity$ $\phi_s = particle \ sphericity = 1$ $d_p = particle \ diameter$

Pressure Drop Results

- Assumptions
 - $-\epsilon = 0.4$
 - $d_p = 1 cm$
- Results indicate He pressure ~180 bar required
- 100m/s velocity results in large amounts of stored energy within system
- Implies we need to limit He velocity to ~ 10 m/s
 - Requires 10X more flow area
 - Space is available
 - If need 1 s to recool the He in a heat exchanger, need 3 kg, volume = 18 m³

http://www.hep.princeton.edu/~mcdonald/mumu/ target/weggel/W&WC_spheres.pdf

Mechanical Complexities

- Non-equally distributed energy deposition
- Complicated cooling channel geometries
- Flow control hardware likely to increase space requirements
- Implement two helium systems (one for mercury cooling, one for tungsten)?

Summary

- Mercury Module now provides double-wall mercury containment with no leak path into tungsten cooling channels
- Helium cooling of the mercury and shielding vessels is not straightforward
- Initial calculations performed based on guesses for energy deposition and very simple geometry model

