

CERN High Power Target Hg Jet Experiment - nTOF11 Facility & Safety Meeting

V.B. Graves P.T. Spampinato T.A. Gabriel

CERN March 15-17, 2005

Meeting Purposes & Goals

- Review current design & operating assumptions
- Discuss safety related issues
- View & verify installation constraints in TT2/TT2A
- Define design requirements and operational constraints
- Discuss installation and handling issues

Outline

- Requirements & schedule
- Target design
 - Delivery system
 - Containment
 - Instrumentation & controls
- Transportation, installation & operations
- Safety features & issues
 - Hg handling

Requirements & Schedule

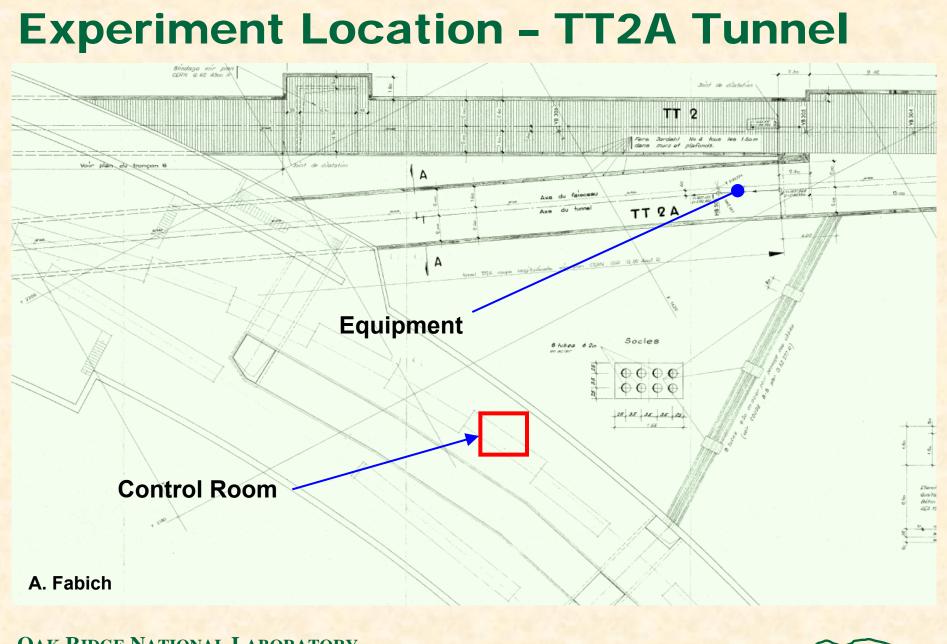
OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

The target system delivers a free (unconstrained) jet of Hg into a 1atmosphere environment of air

- 1-cm diameter jet, delivered every 30 minutes
- Full-beam interaction length is 30-cm
- 24 GeV, 1 MW proton beam, <20x10¹² ppp
- Beam line is 121-cm (47.6") above tunnel floor
- Up to 100 pulses for the CERN test, 500 pulses for systems tests
- 15 Tesla field
- 1-sec steady state jet during the magnet peak field (unresolved)

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Design Requirements & Constraints


- Hg Jet
 - 1cm dia, 20m/s (1.57 liter/s, 24.9 gpm) in same direction as beam
 - Free jet created inside 15cm magnet bore
 - Smooth, steady-state jet duration overlaps 1-sec max field duration
- Integrate optical diagnostics
 - Fiber-optic system integrated with 5K frames/sec camera to record jet/beam interaction
- 40-100 beam shots over 1 week period
 - Period between beam shots approximately 30 minutes to allow magnet cooling
- No target equipment on up-beam end of magnet
- Materials compatibility with Hg
- Component module size limitation is 1.3m x 3m (facility issues)

Requirements (cont.)

- Hg-wetted materials shall be stainless steel type 316 or 304
- Base support structure shall be aluminum
- Gaskets shall be non-reactive with Hg and radiation tolerant to 10⁴ rads
- Operating temperature of the Hg shall be from 20°C to 100°C
- Installation align and insert the target probe into the solenoid bore within ±1.0 mm, and position the target/solenoid assembly to the beam line within ±0.5 mm (fiducials are to be located on the solenoid)

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Target Containment is Designed To Meet ISO 2919 (per CERN)

ISO 2919 "Classification of Sealed Source Performance" Table 2, Class 2

- Temperature: -40° C (20 minutes), +80° C (1 hour)
- External Pressure: 25 kPa absolute (60 psi) to atmospheric
- Impact: 50 grams from 1 meter, or equivalent imparted energy
- Vibration: 3 times 10 minutes, 25-500 Hz at 49 m/s² (5 g_n, acceleration maximum amplitude)
- Puncture: 1 gram from 1 meter, or equivalent imparted energy

Operational Requirements To Be Resolved

- What operations are allowed in the tunnel?
- Opening primary/secondary containment?
- Are other CERN facilities available for Hg operations?
- What hydraulic fluids allowed?
- Installation details that affect design?
- Power available for target system?
- Etc?

Hg Target System Design-nTOF11	Start	Finish				04								200													006						200
ng ranget system besign-inform	Date	Date	Jul	Aug	Sept	Oct	Nov [Dec	Jan Fe	b Ma	ar A	pr Ma	ay L	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Jar
				Rev. 7	Mar	2 200	15)																										
Solenoid/Cryostat Milestones Fabricate	5/31/04	3/20/05			,	-, -,				_	_		_																				<u> </u>
Deliver/Install at MIT	3/21/05	5/1/05	-					_			V		_																				
											<u> </u>																						-
Magnet System Test at MIT	5/2/05	7/3/05													7																		-
Setup Target Equipment at MIT	3/13/06	4/2/06																					Ŷ	Ŷ									
Integrated System Test at MIT	4/3/06	5/28/06			Note) 	1 1																	<u> </u>		7							
Install/Test Power Supply at CERN (by	6/5/06	7/31/06					hedule	is Bas	sed on 1	estind	a															Manan		😾 by (CERN	Engin	eers		
others)							n Decen				9																		Techn				-
Install Cryo System Equipment & Dewar (by others)	6/5/06	7/31/06			2. R	ed dia	amonds	Indic	ate Estir	n a te d	Trav	el																×	1		1	1	
Ship Magnet & Target System To CERN	7/31/06	9/24/06																															_
omp magneta rarger bystem to berth	8/14/06	5/24/00																						Packi	ng an	d ship	ping	^ ◆				1	
Install and Test Equipment in TT2A Tunnel	9/25/06	10/29/06																							ccur a			літ —					
(or at other CERN facility)																								сотр	letion	of th	e MIT				7	1	
Commission Test Equipment at CERN (verify	10/30/06	11/29/06																						tests c	on Ma	y 28					<u> </u>	,	_
system operational capability in TT2A)																															Ľ		_
Beam On Experiment	12/4/06	12/22/06																													LT		
Decommission (remove from beamline,	12/25/06	1/21/07																														_	_
cooldown, dismantle, ship target/Hg to ORNL)																															لــــــــــــــــــــــــــــــــــــــ		
																															1		_
Hg Target System																															()		-
1. System Design						P	rinceton				CER	N																					
1a. Engineering Coordination	7/5/04	1/25/07	\diamond					_																				1			<u> </u>		_
	11/15/04	444404					•				-					- 400	× App0	5															-
1b. Establish Interfaces & Obtain Requirements	8/2/04	11/14/04		<u> </u>		-	•										, Thhe	1													1	1	
1c. Neutronics Calcs (BNL)	8/2/04	8/31/04			BN	\mathbf{D}					_																						
1d. Develop Interface Dwgs	8/2/04	9/30/04				-,				_	_		_																				-
ru. Develop intenace Dwgs	0/2/04	3/30/04		<u> </u>		Ŷ																									1	1	
1e. Design Hg Flow Loop System																																	
							I T	itle I					Revie	II Des	lign																1	1	
Title I Design	11/15/04	1/30/05					~							7																			
	6/6/05											• II '	Ĭ			Nozz	la —																<u> </u>
Title II Design	2/21/05	5/29/05						Title	11				_∕		\sim	- Nozz Desię	ie														1	1	
1f. Develop Procurement Specification	7/11/05 4/25/05	7/29/05 5/27/05						_Desi					$ \parallel$			Desig	JII																-
The Develop Procurement Specification	2/7/05	5/27/05						Revi	ew 🗡			\sim	⇒																		1	1	
1g. Design Optical Diagnostics (BNL)	10/1/04	2/6/05																															_
· 3· - · · · 3·· · · · · · · · · · · · ·	2/21/05	6/5/05									-																				1	1	
1h. Design Target Windows (BNL)	1/3/05	5/1/05						_			(BNI		NL)																				
	5/2/05	5/2/05						-				(D						Fund	s For	1													
1i. Nozzle/Hg Deflector Tests (Princeton)	4/4/05	7/3/05							(Pri	nceton	n) 🗖				1				uremer	nt													
1j. Procurement (Bid & Award)	6/6/05	8/28/05											Q	,		\				FY06													
1k. Fabrication	10/3/05	12/30/05																<u> </u>			¢												
11. Assembly and Systems Test	11/28/05	2/26/06	1															1	<	,	-	- c				-	1	1					
1m. Prepare/Ship Target Assembly to MIT	2/27/06	3/9/06									_												-0				-				(
1n. Install Target Equipment at MIT	3/13/06	4/2/06																					F1								(-
m. mstan Target Equipment at MIT	3/13/06	4/2/06																					🖇	¢							1	1	
2. Assist w/ Integrated Test at MIT	4/3/06	5/28/06					+ +																міт —										
	4/10/06																						· · ·	Y -	$+ \bullet$	1					1	1	
3. Coordinate Design Effort with CERN	10/4/04	5/31/05				\diamond	+ +	-				-	⇒											міт —	MIT -								
4. Develop Decommissioning and	2/1/05	5/31/05	1	-	<u> </u>					1								1			<u> </u>					-	-	1					_
Disposition Plan											-		Þ																		1	1	
5a. Develop Shipping & Installation Plan for	3/21/05	5/31/05									<u>. </u>		~																				
MIT and CERN	2/24/05	E /24 /05									_																				í — – – – – – –		
5b. Develop System Test Plan	3/21/05	5/31/05	-	-	-	-	<u> </u>			`	<u>م</u>							-			-					_	-	-	CER	N	CEI	RN	
6. Provide Support for the High-Power Tests at CERN	10/30/06 11/13/06	1/21/07																											•	• <	•	-	-
			Jul	Aua	Sept	Oct	Nov [Dec	Jan Fe	b Ma	ar A	pr Ma	av .	Jun	Jul	Aua	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul.	Δυα	Sent	Oct	Nov	Dec	

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg Target Schedule Highlights

Title 1 Design Review at ORNL

Collaboration Mtg at CERN

Title 2 Design Review

Target System Procurement & Fabrication (dependent on funding)

Assembly & Testing at ORNL

Integrated Testing w/Magnet

Equip. Installation at CERN

Earliest Beam-on Tests at CERN (no beam time scheduled yet)

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Feb 7-8, 2005

Mar 15-17, 2005

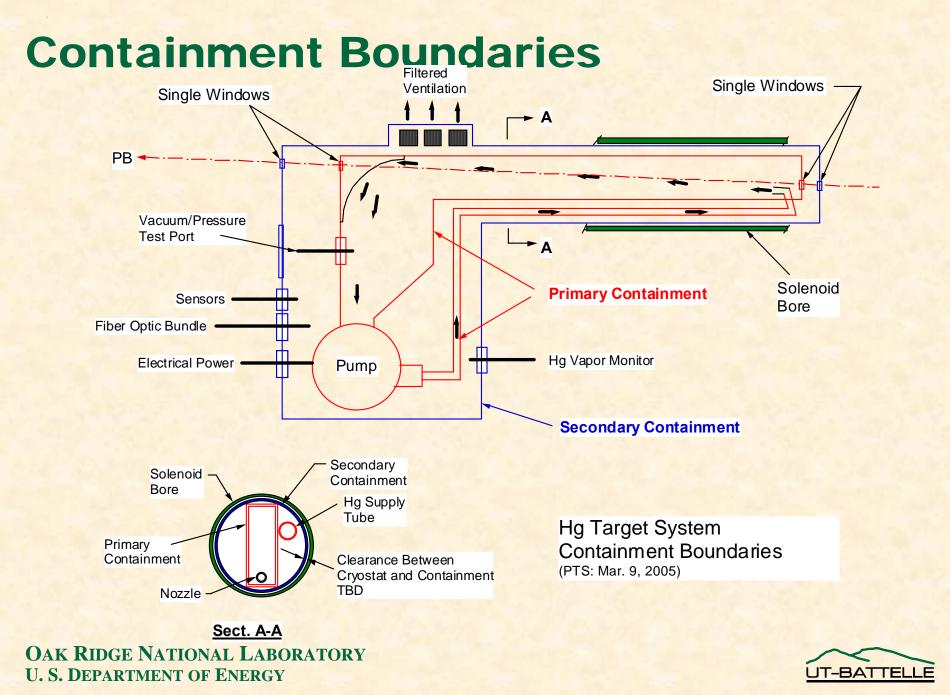
May-June '05

July '05 – Dec '05

Nov '05 – Feb '06

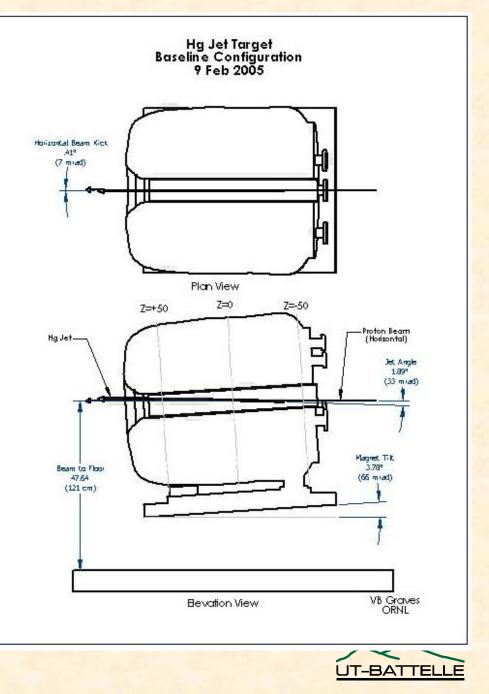
Mar '06 – May '06

Oct '06 - Nov '06

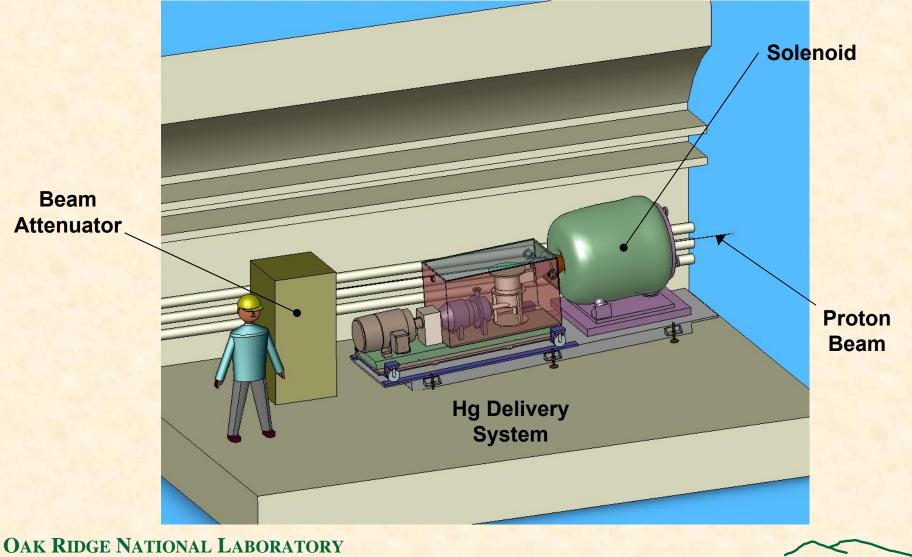

Dec '06

Target System Design

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

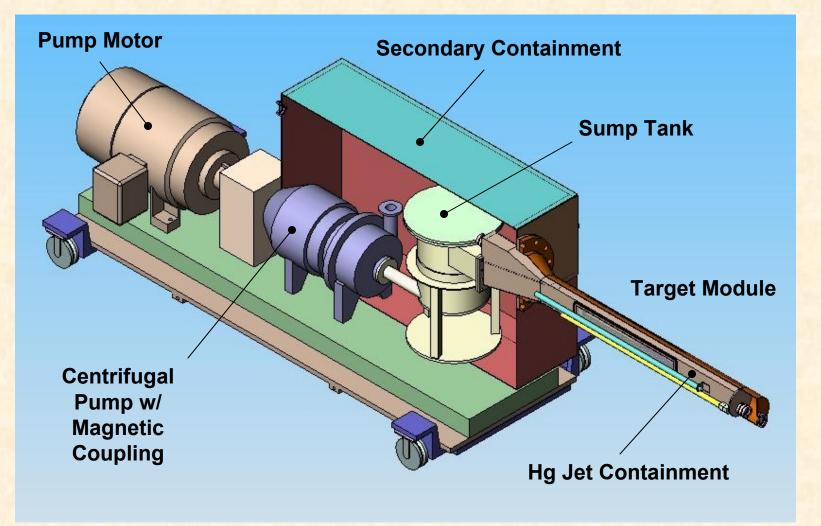


Experiment Geometric Configuration


Experiment is prototypic of a N.F. facility target layout

- Magnet tilt (wrt beam) = 66 mrad (3.8°)
- Hg jet tilt (wrt magnet axis) = 100 mrad (5.7°)
- Hg jet center intersects beam center at Z=0

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY


System Overview

U. S. DEPARTMENT OF ENERGY

UT-BATTELLE

Original Hg Delivery System

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Pump Issues

Pump adds heat to Hg

- Application is low flow, high pressure $\rightarrow \eta$ =23%
- Pump delivers nominal 51hp
- Per pump vendor data, heat energy into mercury = 40.5hp (30kW)
 - With an assumed Vol=12liter, ΔT=2.4°F/sec (1.3°C/sec) due to pump heating only
- Max available pump output pressure is 750 psi (50 bar)
 - Estimated piping system pressure drop 800-850 psi

Pump Issues

Pump adds heat to Hg

- Pump delivers nominal 51 bhp at 23% efficiency (60 bhp max)
- Magnetic coupling losses 5.4 hp
- Heat energy into mercury
 - LostHP = (bhp mag)*(1 eff) + mag = 40.5 hp (30kw)
 - With an assumed Vol=12liter, ΔT=2.4°F/sec (1.3°C/sec) due to pump heating only

 Max available pump output pressure is 750 psi (50 bar)

- Estimated piping system pressure drop 800-850 psi

Pump Energy Balance

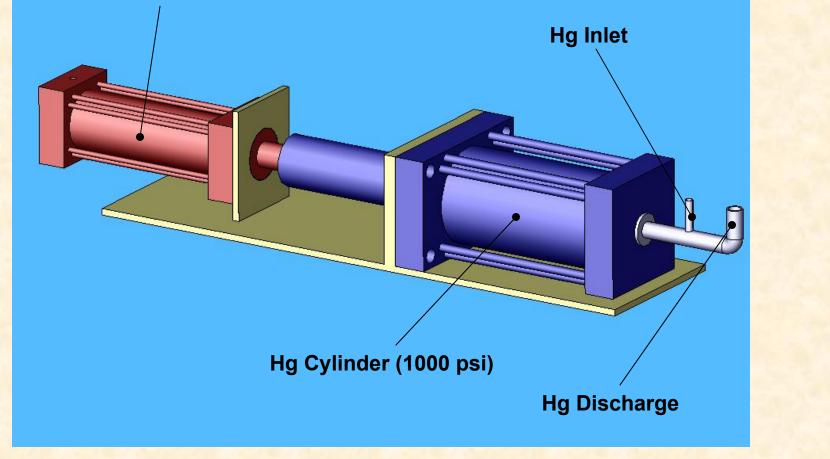
Pump					Heat Direct to Tunnel	Heat Input to Hg	Flow Losses		I Heat erated		Energy to Hg	Hg Temp Rise
	Input Energy (hp)	Losses	Lost Energy (hp)	Output Energy (hp)	BTU/min	BTU/min	BTU/min	BTU/ min	KW	HP	BTU/min	°F/sec
Elect Motor	60	60 hp * 5% inefficiency	3	57	127	1000		127	2	3		1000
Mag Coupling	+22	5.4hp actual coupling loss per vendor data	5.4	51.6	229			229	4	5		
Hg Pump		40.5hp actual pump loss per vendor data	40.5	11.1		1719	7	1719	30	40	1719	
Hg Flow		800psi*25gpm	12	-1			526	526	9	12	526	
	1	12112		Totals	356	1719	52 <mark>6</mark>	2601	46	61	2 <mark>245</mark>	3.1

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Possible Solutions

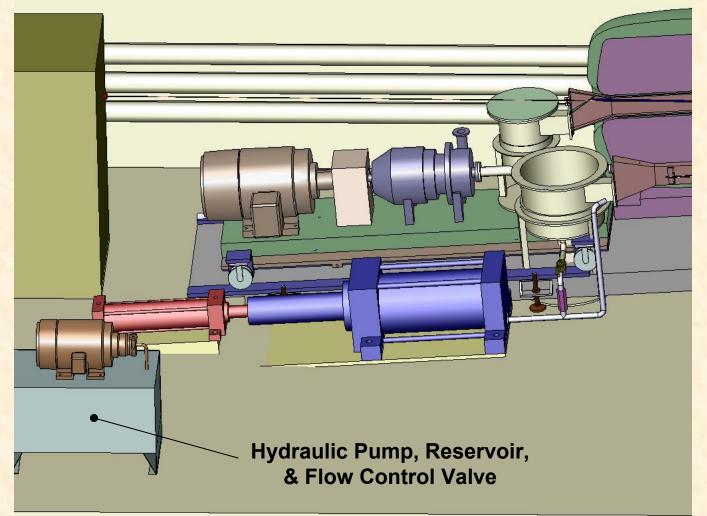
- Heat issue
 - Increase Hg volume (ΔT decreases linearly with Hg mass)
 - Add heat exchanger for system testing
 - May not be needed during CERN tests

Discharge pressure issue


- Vendor specified magnetic-coupling pump with max discharge pressure
 - Same vendor designed TTF & SNS Hg pumps
- Investigate alternative Hg delivery systems

Nature of experiment lends itself to non-continuous flow approach, so...

Alternative Hg Delivery System


Hydraulic Fluid Cylinder (3000 psi) Controlled by Proportional Directional Flow Control Valve

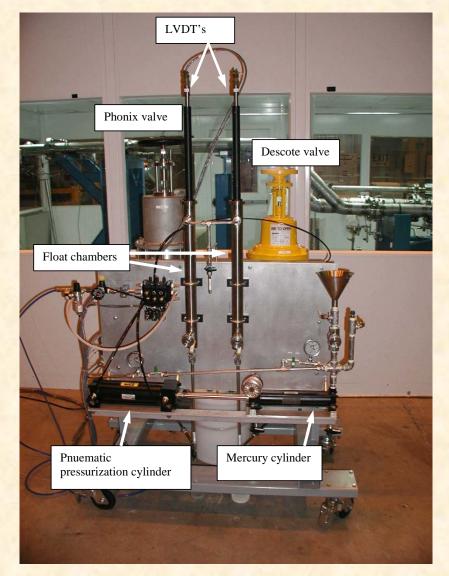
OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Syringe Size Comparison

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

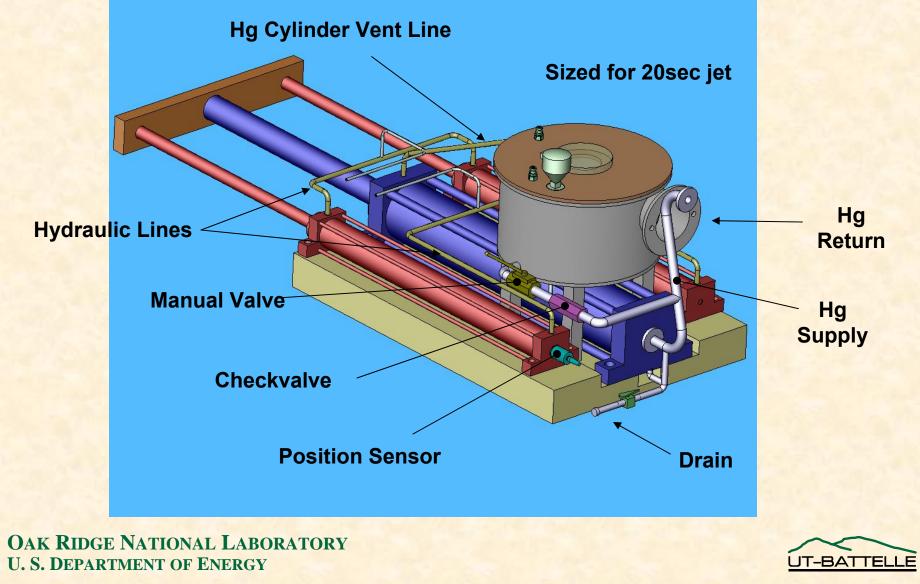
System Energy Comparison

Pump				Heat Direct to Tunnel	Heat Input to Hg	Flow Losses		l Heat erated	Energy to Hg	Hg Temp Rise	
	Input Energy (hp)	Losses	Lost Energy (hp)	Output Energy (hp)	BTU/min	BTU/min	BTU/min	BTU/ min	KW HF	BTU/min	°F/sec
Elect Motor	60	60 hp * 5% inefficiency	3	57	127		10010	127	2 3	12.00	
Mag Coupling		5.4hp actual coupling loss per vendor data	5.4	51.6	229			229	4 5		
Hg Pump		40.5hp actual pump loss per vendor data	40.5	11.1		1719		1719	30 40	1719	
Hg Flow		800psi*25gpm	12	-1			526	526	<mark>9</mark> 12	526	
				Totals	356	1719	526	2601	46 61	2245	3.1
Syringe			1							2.0	35
Elect Motor	20	20 hp * 5% inefficiency	1	19	42	2.1		42	1 1	100	
Hyd Pump		energy performed on piston = press*area*dist/time	11	2.7							
Hyd Pump		pump inefficiency	8	11	340	100		340	68		1
Piston Energy	to Hg	no losses	3	11							100
Hg Flow		800psi*25gpm	12	-1			526	526	9 12	526	
				Totals	382		526	908	16 21	526	0.7

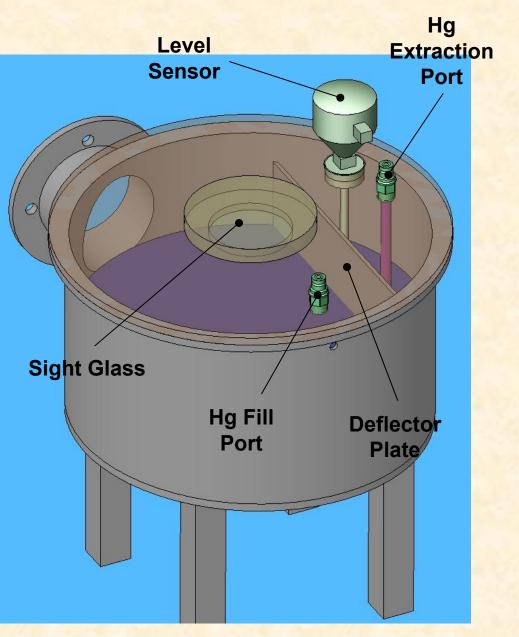

Syringe Performance Benefits

- Piston-driven jet has excess capacity to overcome flow losses
- No significant heat imparted to Hg by piston
 - Heat losses isolated to hydraulic system
 - Flow losses identical to those in pump system
 - No heat exchanger required
- Syringe design may be smaller than shown, depending on Hg volume required
 - 1.6 liter/s \rightarrow 48 liter for 30sec, 24 liter for 15sec
 - Concept shown in size comparison was sized for 30sec jet
- Lower power requirements
 - 20hp hydraulic pump motor vs. 60hp centrifugal pump motor
- Proportional servo control valve provides precise velocity control of hydraulic cylinders

Hg Cylinder Experience


- SNS test stand used pneumatic cylinders to cycle candidate drain valves several thousand cycles with no leaks
- Low-pressure application with automated controls

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY



Sump Tank

- 22" SS pipe
- Hg inventory for 20sec jet
 - 36 liter, 1068 lb
 - 6 inch depth
- Incorporates float-type level sensor, Hg fill & extraction ports
- Thermocouple on sump exterior or in direct Hg contact

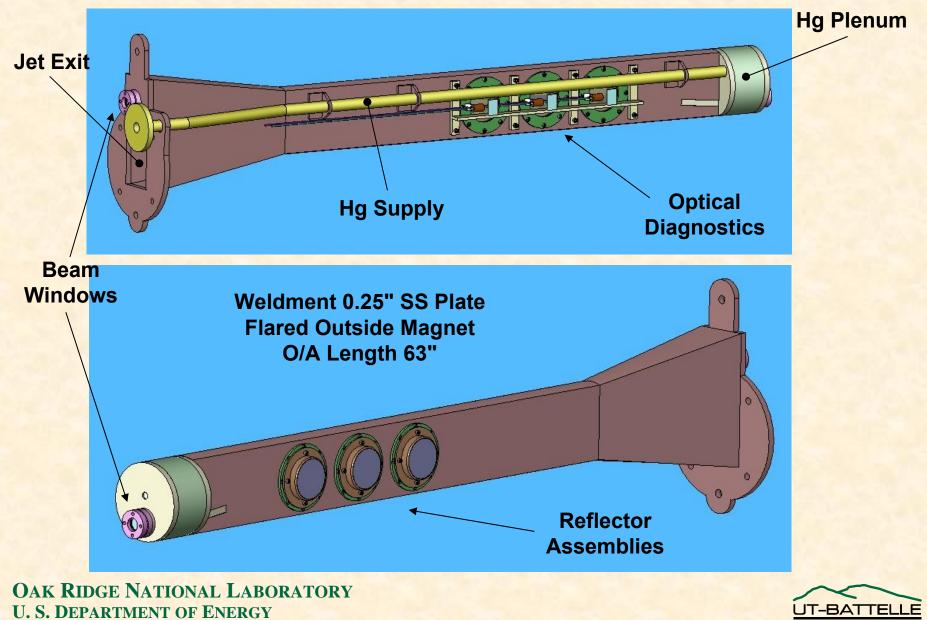
OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg Delivery System

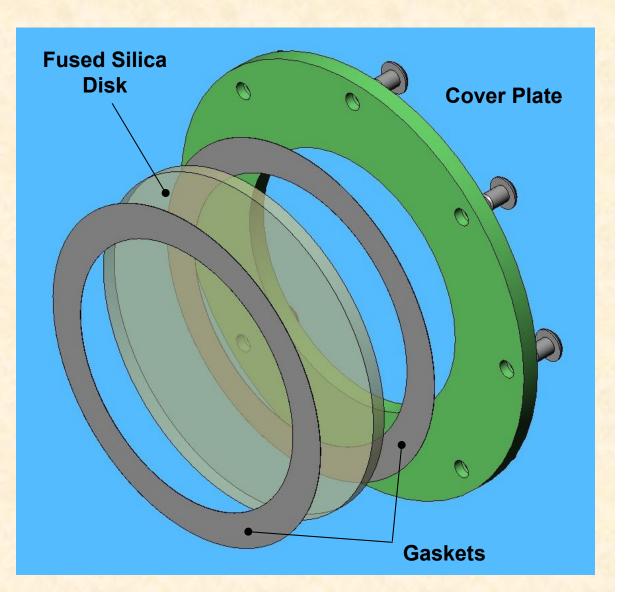
SS Flex Metal Hoses – 1" and 6"

- 8" Hg cylinder, 4" hydraulic cylinders, 39" strokes
 - Sizes chosen based on costs
- Position sensor allows actual flowrate calculations
- Checkvalve prevents backflow into sump
 - Must remain submerged throughout experiment to prevent air intake in cylinder
- Discharge pipe will require structural supports

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

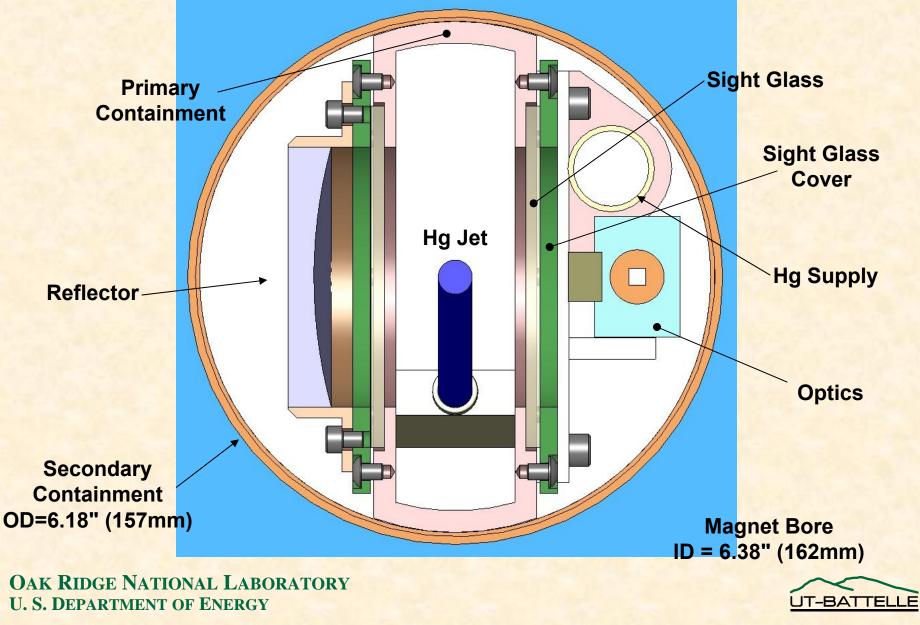

Syringe Sequence of Operations

- Retract cylinder
 - Checkvalve allows Hg to drain from sump into cylinder
- Fill supply line
 - Slowly move cylinder forward until Hg drips from nozzle, then stop cylinder
 - Prevents shock loads on piping
- Produce Hg jet
 - Coordinated with beam pulse
 - Ramp to full speed (~1-2 sec to remove flow transients)
 - SS jet
 - Ramp down to zero flow
- Piston pump idle while magnet cools

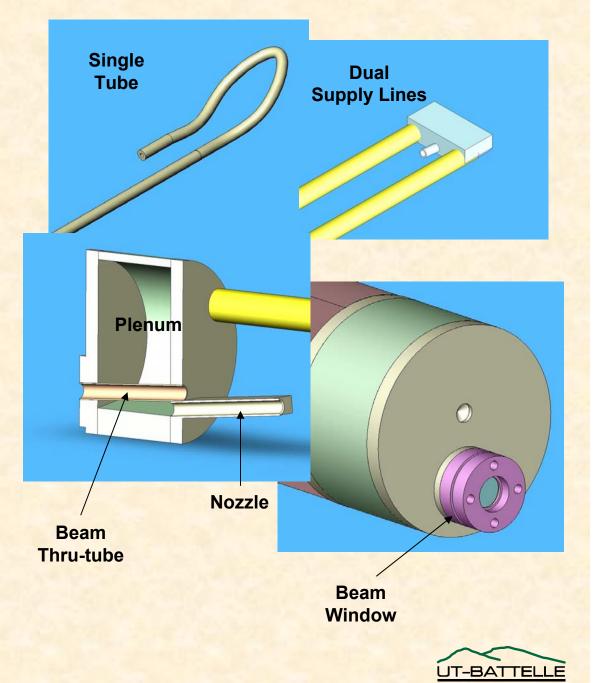


Primary Containment

Viewports

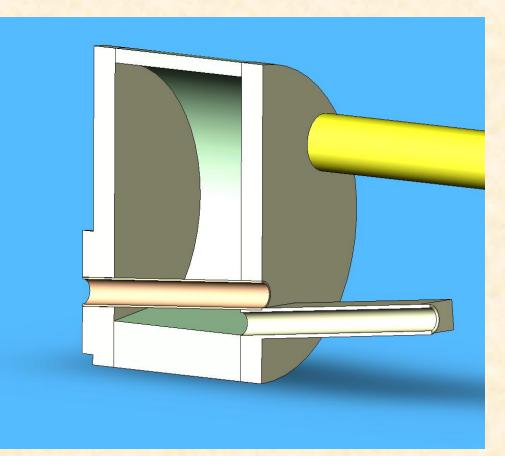

- Optical viewport laminated with rad-resistant gaskets
- Mechanically fastened cover plate
- Structural rigidity of disk needs further analysis

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY



Primary Containment Cross Section

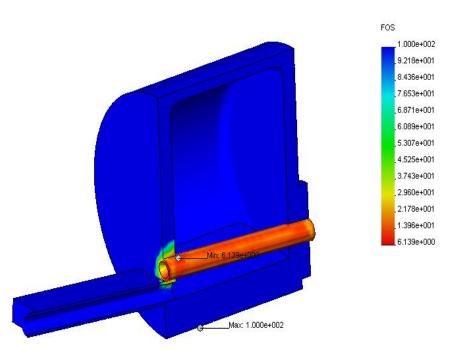
Hg Plenum


- Purpose is to provide reservoir to allow Hg to change direction in confined space
- Several designs have been considered
- Open chamber with nozzle exit and beam thru-tube

nTOF11 Collaboration Meeting 15-17 Mar 05

Plenum Issue

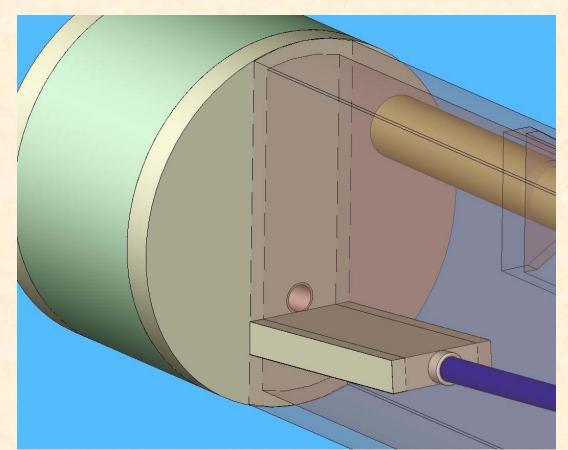
- Trapped air in plenum
 - Swept out with Hg
 - Compressed and acts like spring
- Solutions
 - Evacuate system prior to operation
 - Hg vapor issue
 - Provide means to quickly move air out nozzle


OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Plenum Structural Design

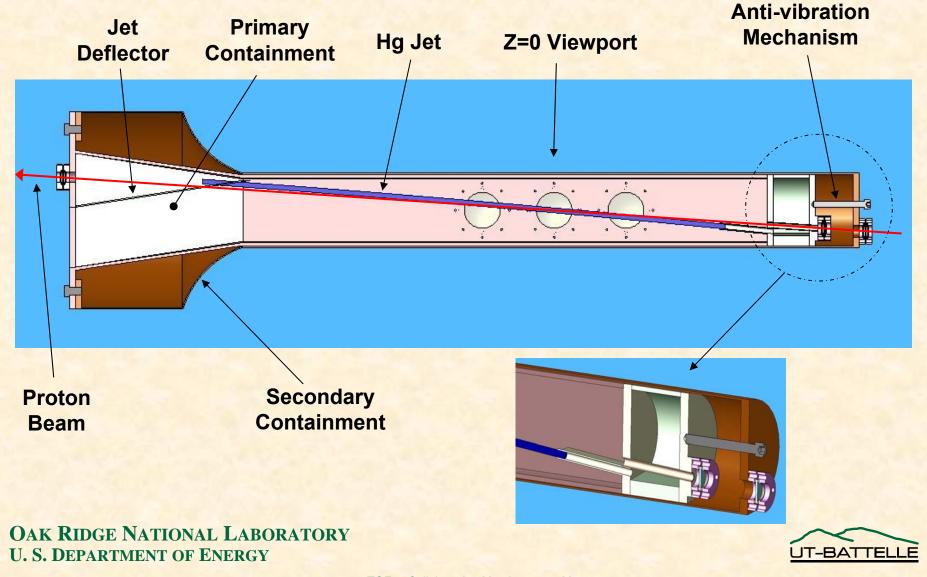
hg plenum assy-850psi :: Design Check Criterion : Max von Mises Stress Factor of safety distribution: Min FOS = 6.1 Deformation Scale 1 : 0

- Static FEA performed using pressure load of 850psi on interior surfaces
- Minimum FOS = 6 around beam thru-tube
- Flow analysis presented by M. Wendel

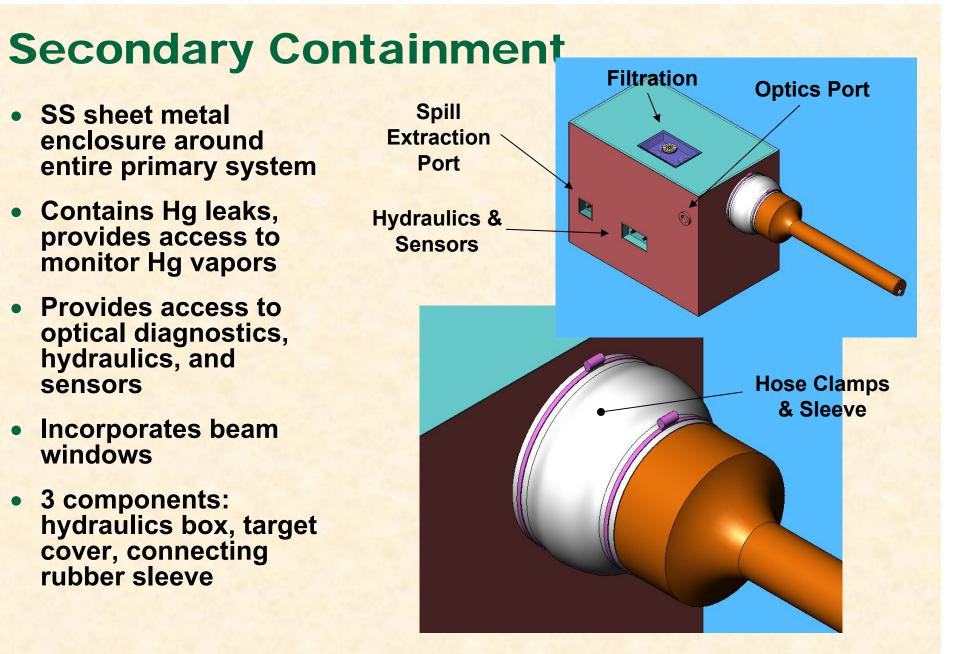


OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Plenum/Nozzle Integration

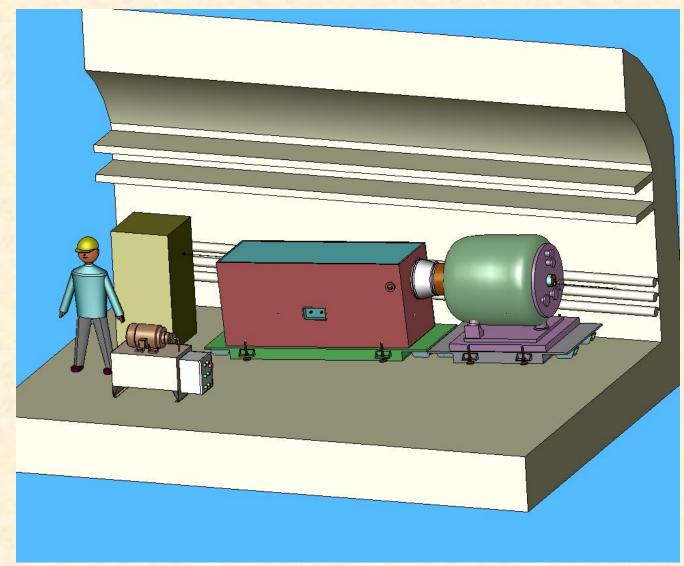

- Plenum & nozzle welded to primary containment – no nozzle replacement
- Nozzle side restraints resist field-induced motion in Hg
- Length set at 10X dia = 4"
- Changes to inlet/exit required based on flow analysis

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY


Primary Containment - Side View

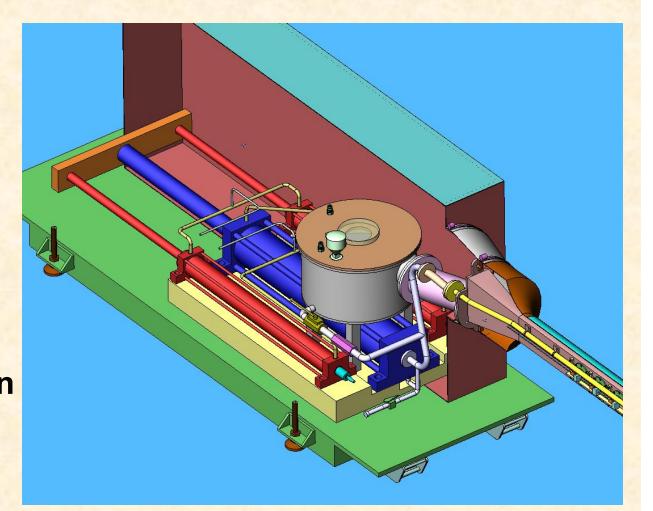
Deflector

- Purpose is to enhance Hg drainage into sump tank by minimizing splashing and Hg drops back into magnet bore
- Material is Ti6Al4V, same material used for beam windows
- Designed as flat plate with low angle of incidence
 - Some curvature may be needed to aid in flow control
 - Princeton tests can be used to provide design feedback
- Stress calculation indicates Hg jet impact force <100lb
 - Deflector thickness of 0.1" provides FOS=5.5

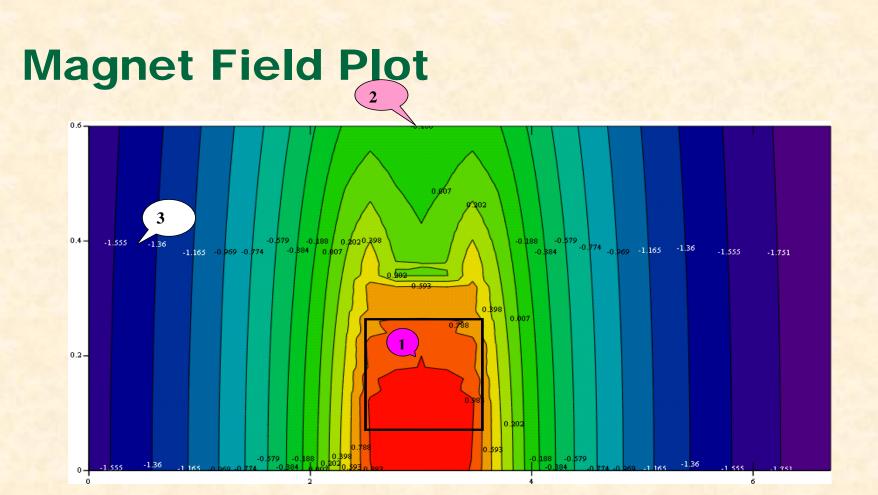


OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Syringe Layout



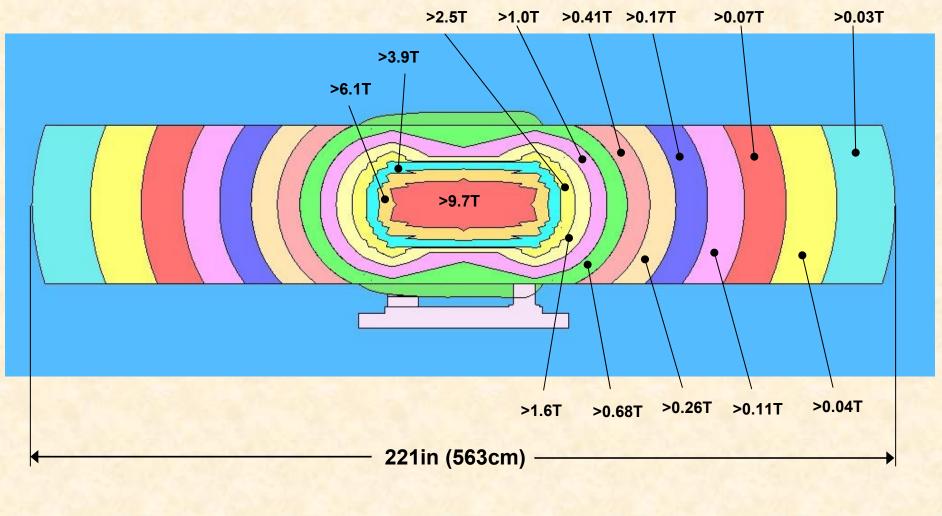
OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY


Hg Target System Design Issue

- Target system exceeds 3m length constraint
- Requires that primary containment be handled as two pieces & reassembled during installation

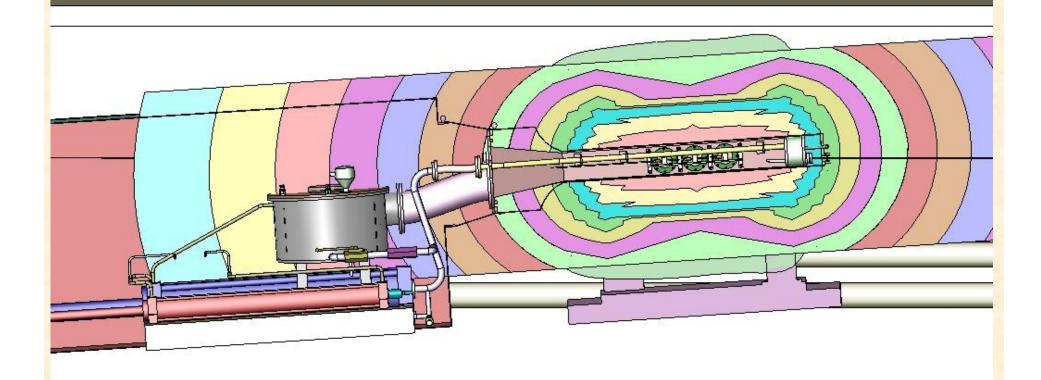
OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

 $\left(xyz_0, xyz_1, \log\left(xyz_2\right)\right)$


Magnetic field distribution: the axes are in meters; the rectangle is one half of the solenoid.

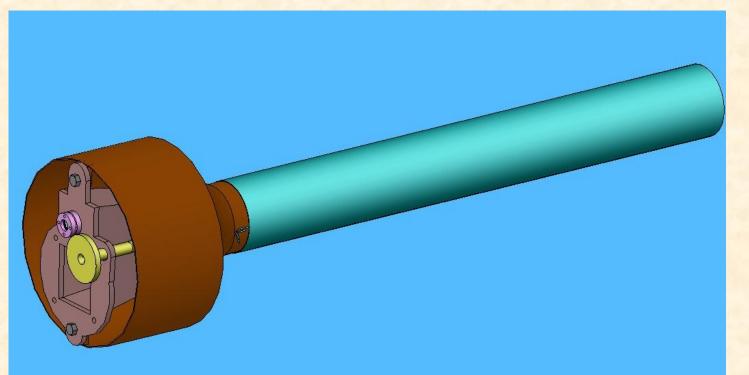
- The volume within the conductor is > 9.7 T (red), > 6.1 T (orange).
- The field at Z=0, R=0.6 is >0.6 T, at R=1.0 (base support structure), B> ~0.1 T (1000 G).
- The field at Z=-2.5, R=0.4 (pump motor) is 0.03<B<0.07 T (300-700 G).

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY


Fields with Solenoid

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Field Near Equipment



OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Target Module Insertion

- Primary and secondary containment mechanically fastened (weight ~ 160 lbs)
- Flexible metal hoses probably already attached
- Could be inserted either before magnet aligned to beam or after

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Title 1 Design Review Comments

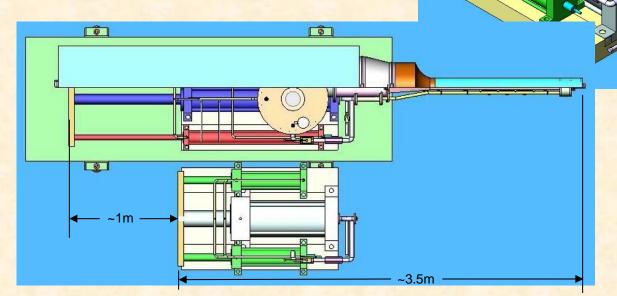
Nozzle design

- More analysis needed
- Nozzle/deflector designs need validation
- Replaceable or adjustable nozzle

Viewports

- Structural rigidity of viewport optics
- May require testing

System sizing


- Footprint for 20sec syringe too large
- Increase cylinder diameter (from 8" to 12") to decrease required stroke
- Decrease required jet duration
- Add filtered breather system to primary containment
- Clarify CERN facility requirements
 - Operational logistics affect system design
 - Prepare failure analysis

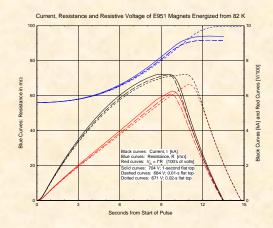
OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg Cylinder Upsizing

Original: 8" Hg cylinder Updated: 12" Hg cylinder Both with 20sec capacity

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Control System Requirements & Constraints


- No existing power available in tunnel
- Power system mounted on hydraulic pump reservoir
- Operator controls 60m away

 Will require some level of communication with other control systems (solenoid, beam, diagnostics)

Operation – Full Field

(Approx.)	Solenoid				
Time	Cryogenics	Power	Target Pump	Proton Beam	Optical
(sec.)		Supply	System	1	Diagnostic
minus 30	Magnet full of	Standby	Refill syringe	Call for beam	Off
	LN ₂ @ 80°K		pump w/ Hg	- And I -	
minus 10	Purge LN ₂ with	Standby	Standby	Wait for beam	Standby
	gaseous He				
0 to 6.5	Magnet full of	Ramp to full	Standby	Wait for beam	Standby
	He gas	current			
6.5 to 8.5	Magnet full of	Ramp to full	Ramp to full	Wait for beam	Standby
	He gas	current	speed jet	10000	
8.5 to 9.5	Magnet full of	At full	Steady state Hg	24 GeV, 1	Operate laser
1.	He gas	current	jet	MW	and high
					speed camera
9.5 to 10.0	Magnet full of	Begin de-	Shut down	Standby	Off
	He gas	energizing	syringe pump		
10.0 to 13.5	Magnet full of	De-energize	Standby	Standby	Off
	He gas	to zero			
13.5 to	Fill magnet	Cool down	Standby	Standby	Off
1800.0*	with LN ₂ @	to ~80°K		1.000	
	80°K				

* Assumes a 30-minute dwell period.

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Power Requirements

- Hydraulic pump 460VAC, 50-60Hz, 60A – Transformer available?
- Proportional control valve 24VDC
- Heater foil 120VAC
- Hg vapor monitor 120VAC
- Instruments 24VDC

Instrumentation & Sensors

- Cylinder position sensor
- Hg level sensor
- Thermocouple
- Hg vapor monitor(s)
- Conductivity probe

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Proportional Directional Control Valve

Bosch Rexroth 4WREE

- Operating pressure: up to 3000psi (210 bar)
- Nominal flow: 8.45gpm (32 l/min)
- Sensitivity: <= 0.05% (equates to 0.003 m/sec nozzle velocity)
- Supply voltage: +24VDC

– Command signal: ±10VDC

Position Sensor

- Temposonics G-series linear position sensor
 - Measured variable: displacement
 - Measuring range: 2-100in
 - Repeatability: 0.001% full stroke
 - Output: voltage or current
 - Update time: <1ms</p>
 - Supply voltage: +24VDC

Hg Level Sensor

- Omega Instruments LVR50-PP two wire liquid level float transmitter
 - Accuracy: 0.25" over span in water
 - Specific gravity: 0.75 minimum
 - Supply voltage: 10-40 Vdc
 - Signal output: 4-20mA
 - Stainless steel construction, choice of head materials
- This particular instrument is too long, but is indicative of a simple Hg level sensor

Hg Vapor Monitor

Specifications

- Resolution 0.001 mg/m3
- Detection range 0.003-0.999 mg/m3
- Accuracy ± 5% at 0.100 mg/m3
- Response Time13 s in sample mode; minimum auto sample time 5 min
- Flow rate 750 cc/min
- Power requirements100-120 V ~ 50/60 Hz, 1A

Hg Vapor Monitor – Mercury Instruments GmbH

Basic Specs

- UV-Absorption method
- 0-100 μg/m³ / <0.1 μg/m³
- 1 sec response
- RS 232 bidirectional for PC, parallel for printer
- 1.5 l/min membrane pump
- Built-in rechargeable or external 12V DC sources, or 110-240V (50/60 Hz) power supply
- 425x150x340 mm, 9kg

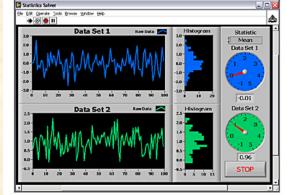
OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Mercury Tracker 3000

Conductivity Probe For Leak Detection

- VEGA Conductive level switches: electrodes with 1 ... 5 probes in rod or cable version
- One electrode can detect up to 5 different levels
- Approved for hazardous areas- certified acc. to ATEX
- Approved as overfill protection to WHG
- Suitable housing versions in different materials
- Rod electrodes up to 4 m length
- Cable electrodes up to 30 m length
- Suitable for product temperatures up to 130°C
- Operating pressure up to 63 bar
- Protection IP 66/IP 67

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY



Preliminary Control System Scheme

- Remote control over long distance limits choices
 - Analog I/O modules need to be close to equipment and power supplies
- PLC may be adequate, investigating capabilities and functionality over required distance

- LabView controller on laptop computer is suggested
 - National Instruments recommends CompactPCI I/O modules
 - Communicates to laptop via EtherNet cable
 - Allows custom operator interface, data logging if required during development
 - Should allow straightforward integration with other control systems

Transportation, Installation, and Operations

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

System LifeCycle

- Shipping ORNL to CERN
- System setup/testing at CERN
- Installation/integration with magnet
- Post-experiment operations
- Shipping from CERN to ORNL

Transportation

- Ship target system from ORNL to CERN and back to ORNL, via surface transport in a 20 ft. sealand container
 - Uncontaminated/non-radioactive Hg will be shipped in standard 2-liter steel flasks (maximum 17) with appropriate overpack containers (1 per flask)
 - All equipment and materials will be on pallets designed for reuse
 - The activated target system and Hg will be stored at CERN until activation levels permit shipping to ORNL as low-level radioactive material

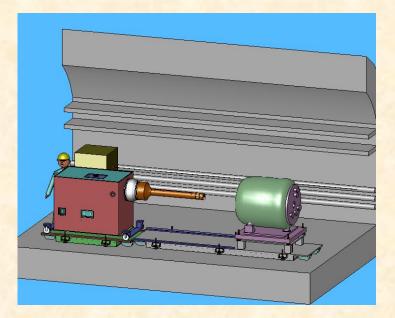
OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Target System Setup and Testing

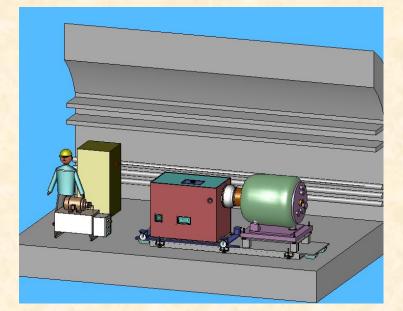
- Perform all Hg loading/unloading in separate CERN facility
- System can be leak checked prior to Hg loading requires opening secondary containment
- If adequate electrical power available, target system and optical diagnostics could be fully operated prior to installation in tunnel
- Due to potential Hg vapors, temporary hut may be erected to house target system
- Target system transported to tunnel shaft loaded with Hg

Facility Constraints

- No overhead lifting capability within tunnel
- Mobile crane used to lower equipment from ground level to tunnel floor
 - All components must have lifting points
- Components moved manually
- Modularity required
 - Component footprint size limitation is 1.3m x 3m

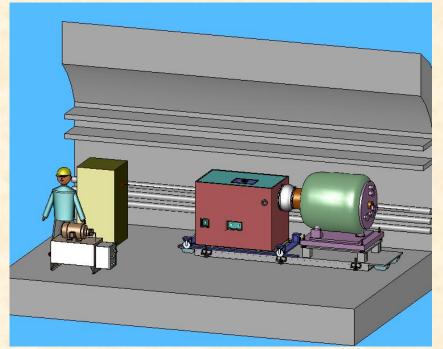


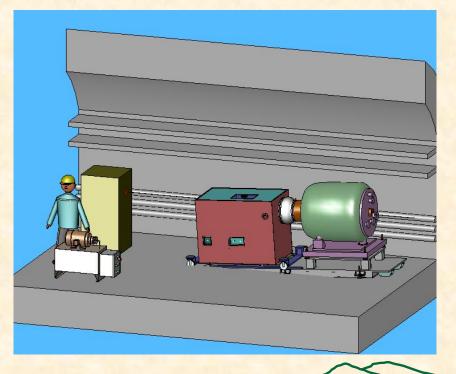
Solenoid/Target Assembly Sequence


Assumes Hg already loaded into primary containment

- Bring all equipment into TT2A
- Position solenoid beside beam on common baseplate
- Manually insert target into bore of solenoid

 Transfer target from carrier baseplate to common baseplate


OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY



Solenoid/Target Assembly Sequence 2

- Move common baseplate into beamline, set elevation and tilt
 Alignment fiducials on solenoid
- Position hydraulic reservoir
- Connect hydraulics & instruments
- Connect power, set up controls

IT-BATTELLE

TT2/TT2A eDrawing

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Target System Decontamination, Dismantling, and Disposal (DD&D)

- 1-2 weeks of activation cool down while target equipment is still located in the beam line position
 - After cool down disconnect services hands on, lower baseplate, and move to the side of TT2A tunnel
 - Minimize operator time near equipment
- 6-12 months of additional activation cool down while located in the TT2A tunnel, but out of the beam line position
- Move to a suitable facility out of the TT2A tunnel for hands on DD&D tasks, in preparation for packing and shipping to ORNL

Equipment Decommissioning/Disposal

- The target equipment (and the solenoid) will have neutroninduced activation
- Based on (H. Kirk 9/01/04)
 - 200 pulses
 - 16 x 10¹² protons/pulse (avg.)
 - 30 days of operation
- Contact dose rate on the iron exterior will be:
 - after 1 hr 40 mrad/hr
 - after 1 day 21 mrad/hr
 - after 1 week 13 mrad/hr
 - after 1 mo. 5 mrad/hr
 - after 1 year 1 mrad/hr
- ORNL will take back the Hg target system and dispose of activated Hg and components
- Magnet, power supply, and cryosystem should be available for other uses ... may be sent to KEK

Proposed CERN Support

Installation

- Rigging crew to move equipment from ground level into TT2A tunnel
- Electrical engineer / technician to connect power
- Instrument engineer to certify proper function of the target controls, integrated into the solenoid system

Operation

- Grad student(s) to operate and monitor equipment
- Decommissioning Tasks
 - Rad-trained technician(s) / grad student(s)
 - Disconnect power
 - Move equipment out of beamline
 - Transfer Hg into storage flasks
- Packing/Shipping
 - Prepare target equipment and Hg for shipment to ORNL

Safety Features & Issues

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Requirement

- Conduct experiment while leaving no traces of Hg contamination in CERN facilities
 - Set up equipment
 - Load Hg
 - Install in tunnel
 - Conduct experiment
 - Remove from beam line
 - Allow radiation decay
 - Remove from tunnel
 - Unload Hg and package for shipment
- Must consider Hg liquid and vapor

Target Design Specifics

- Primary & secondary containment for liquid Hg
- System designed for 1atm overpressure
- Hg vapor filtration system
- Sensors to monitor for leaks or spills
- Hg loading/unloading with minimal openings
- If major leak occurs, Hg removal from secondary will be possible without opening secondary

Hg Handling Issues


Properties, Safety Limits, Standards

- Atomic Weight: 200.59
- Boiling Point: 357 degree C
- Specific Gravity: 13.6
- Vapor Pressure: 0.0012 mm Hg
- Vapors: colorless, odorless
- Solubility: insoluble in water
- NIOSH/OSHA limits: 0.05 mg/m³, 10 h/day; 40 h/wk
 - ORNL: 0.025 mg/m³, respirators at 0.012 mg/m³

The Target Test Facility (TTF) - Basis For ORNL's Hg Handling Experience

- Full scale, prototype of SNS Hg flow loop
- 1400 liters of Hg
- Used to determine flow characteristics
- Develop hands on operating experience
- Assess key remote handling design issues

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

TTF Pump Room and Target Room

- 75 Hp centrifugal pump
- Nominal flow at 1450 liters/min (380 gpm)
- Completed several major equipment upgrades for piping and target configuration

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg Transfer

TTF vacuum pump was used to transfer Hg directly into the storage tank

- Lower risk than manual loading or using a pump
- Faster operation, ~ 1-1/2 minutes per flask (over 500 flasks required for TTF)

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg Vapor Filtration

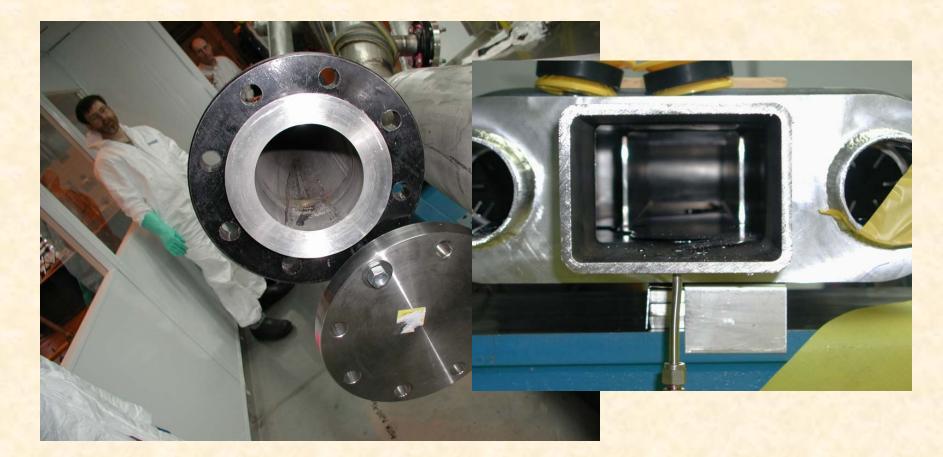
- Primary and secondary containments have air at 1 atmosphere
 - Air activation is not an issue since the air is not purged after each pulse and 1 hour of waiting is sufficient for decay
 - May require cartridge filtration like the WNR Bubble Test Loop
- ORNL testing will determine efficiency of system
 - Filtration system may require cap in tunnel
 - Additional vapor monitor for filtration exit may be needed

Other Req'mts

- Filling/Draining Hg vacuum pump or peristaltic pump
- Maintenance/Handling equipment is assembled hands on but maintained and operated with minimal contact by personnel
- Design Life designed for 10,000 start/stop cycles
- Operating Cycle up to 20 seconds of 1-cm jet every 30 minutes, up to the temperature limit of the Hg inventory

Proper PPE Is Mandatory

 Overalls, gloves, and overshoes are the minimum requirement, respirators used if indicated by Hg vapor monitoring



OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Mercury Puddling

 Mercury will collect into small droplets and large puddles even in pipes sloped at 1 degree

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Problem Indications

Indicator(s)	Possible Cause(s)	Remedial Action	
Hg vapor level increase in secondary	Small leak in primary containment Residual Hg vapor on primary containment	None – continue instrument monitoring during experiment	
Hg temperature increase	Expected behavior	None – continue monitoring, look for increase Hg vapor levels	
Sump level decrease	Substantial leak in primary containment	Continue experiment, but monitor sump level	
Conductivity probe	Primary containment failure – verify with sump level sensor	Experiment suspended	

Target System Design Requirements Include Off-Normal Events

- Postulate Worst Credible Event
 - The full inventory of Hg leaks from primary containment into secondary containment ... 34 liters will result in ~1.5 cm deep pool of Hg in secondary containment
 - Close the ventilation pathway through the filter pack
 - Wait for sufficient rad cooldown before moving the equipment out of the beamline
 - Drain/pump activated Hg from the secondary containment into storage flasks
 - Move the target equipment to an area out of TT2A that has suitable ventilation apparatus
 - Decon the target system, determine the reason for leakage, repair if possible

