

MERIT Hg System Final Design Review

Hg Target System Operations

V.B. Graves P.T. Spampinato T.A. Gabriel

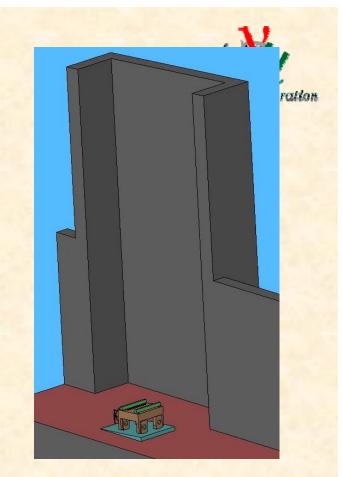
MERIT Collaboration Meeting MIT Plasma Science & Fusion Center Oct 5, 2005

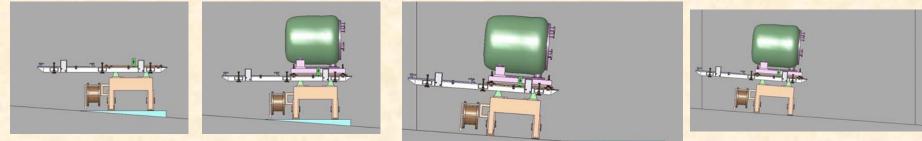
> OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Outline

- Facility constraints
- System installation
 - Components in TT2A
 - System assembly & alignment
- Hg handling & filling
- Off-normal conditions
- System removal and decommissioning
 - System disassembly
 - Hg drain
 - Prepare for shipment

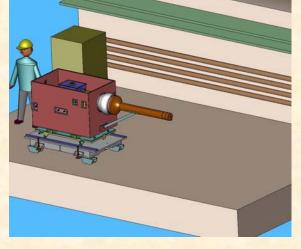
Facility Constraints



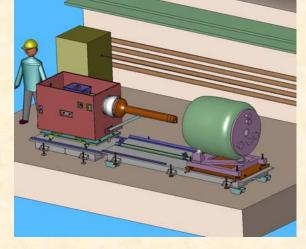

- No overhead lifting capability within tunnel
- Modularity required
 - Component footprint size limitation is 1.3m x 4.4m
- 40cm step traversal required to enter TT2A

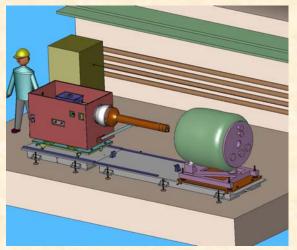
Components into TT2A

- Mobile crane used to lower equipment from ground level to pit floor
- Hilman rollers or on-board casters allow component transport
- CERN "turtle" available as needed
- Prefer to use cable ratchet to control travel down slope

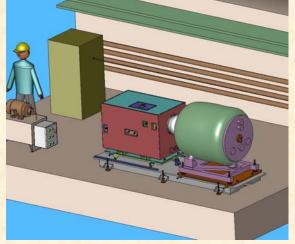

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

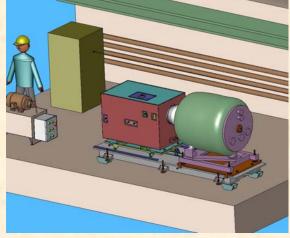
Installation Sequence Part 1 (Out-ofbeam)




Transport Hg System

Remove Rollers

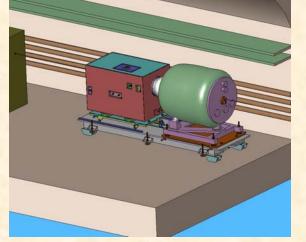

Transport Baseplate, Install Magnet

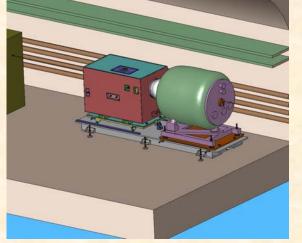


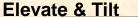
Remove Rollers, Level Magnet

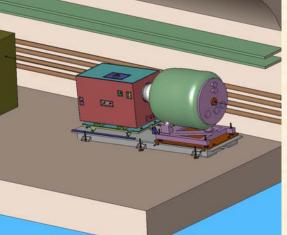
OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Roll Hg System into Magnet


Add Rollers


Installation Sequence Part 2 (Inbeam)




Roll System into Beam Line

Remove Rollers

- Baseplate & magnet will go in beam line prior to Hg system
- Blocks under magnet end to provide adequate tilt

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Alignment to Beam

- Fiducials assumed to be on magnet baseplate and Hg system secondary containment sleeve
- Gross alignment with Hilman rollers
- Fine alignment with baseplate alignment mechanisms for magnet & Hg cart
- Precision alignment using CERN beam locators
 - May still require fine tuning after first few beam pulses
- May need secondary/magnet interface bracket to prevent nozzle movement

Hg Handling Issues

Properties, Safety Limits, Standards

- Atomic Weight: 200.59
- Boiling Point: 357 degree C
- Specific Gravity: 13.6
- Vapor Pressure: 0.0012 mm Hg
- Vapors: colorless, odorless
- Solubility: insoluble in water
- NIOSH/OSHA limits: 0.05 mg/m³, 10 h/day; 40 h/wk
 - ORNL: 0.025 mg/m³, respirators at 0.012 mg/m³

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

The Target Test Facility (TTF) - Basis For ORNL's Hg Handling Experience

- Full scale, prototype of SNS Hg flow loop
- 1400 liters of Hg
- Used to determine flow characteristics
- Develop hands on operating experience
- Assess key remote handling design issues


OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

TTF Pump Room and Target Room

- 75 Hp centrifugal pump
- Nominal flow at 1450 liters/min (380 gpm)
- Completed several major equipment upgrades for piping and target configuration

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

10

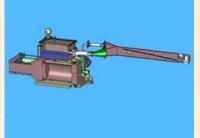
TTF Hg Loading

 TTF vacuum pump was used to transfer Hg directly into the storage tank from 540+ flasks
Peristaltic pump available as backup

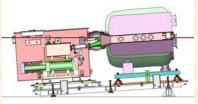
OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Proper PPE Is Mandatory

 Overalls, gloves, and overshoes are the minimum requirement for TTF loop maintenance


OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

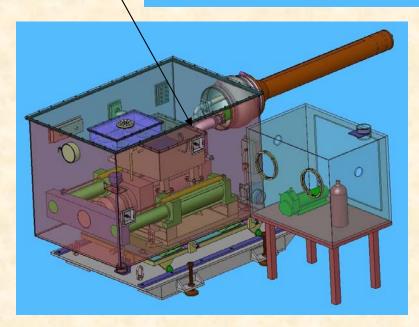
Operational Issues


- Is special notification required at MIT for Hg operations for integrated systems testing
 - The schedule shows a safety review and target test plan to be presented to MIT staff in Feb. 2006
- Will CERN provide the third vapor monitor for sampling the tunnel environment?
 - Who is responsible for monitoring the tunnel?
- Will MIT and CERN provide support for repackaging the target equipment and Hg for delivery back to ORNL?

13

Hg Loading

- A glove box could be required for unloading Hg at the completion of testing if refilling flasks is not permitted outside of the secondary containment
 - Consider use of snorkel near flasks in lieu of glove box

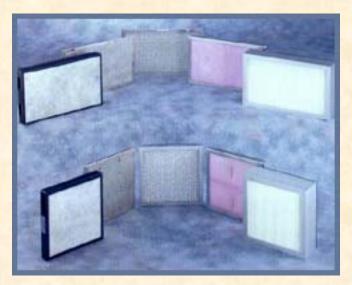

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg Loading Operation

- Secondary containment cover remains installed
- Pump into sump tank
 - Air displaced from sump tank vented through secondary passive filtration
- Hg vapor control with snorkel
- Glovebox used if required

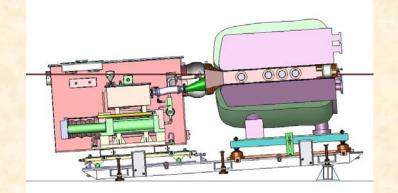
<image>

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY


MERIT Collab. Mtg Oct 17-29, 2005

Inlet port

Filter Replacement



- Effectively requires breaching the secondary containment
- Filter pack will be covered by a plastic bag taped in place
- Snorkel will be placed adjacent to the filter
- Monitor # 3 will be used to sample air in the filter region

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Estimate For Filter Lifetime

Saturation Pressure

$$\log P_{sat} = -3105.5 / T_{0_{K}} + 4.9294 \quad \text{(bar)}$$

Saturation Concentration

 $C_{sat} = 2.445 P_{sat} / T_{0_{K}} (\text{Kg}_{\text{Hg}}/\text{m}^{3}) \qquad (P_{sat} \text{mbar})$

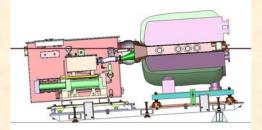
Ref. Quechsilber und seine Gefahren, Swiss government worker safety report, SBA No. 145, Luzern

Flow Rate 110 cfm

- Temp. 25 °C
- Filter Effic. 99.0%

- Filter Weight 6 lbs
- Filter Satur. 12%
- Filter Life 185 hrs
 - Does not incl. reduction for humidity

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY


Selected Off-Normal Events and Recovery

- We need to address credible off-normal occurrences and recovery
- 1. Small spill (1 ml) or vapor leak into the secondary containment verified by vapor monitors # 1 and # 2
 - Continue to operate to the expected limit of the filter lifetime based on the measured vapor concentrationanalysis
 - Monitor for changes to vapor readings in the secondary enclosure
 - o Monitor air in the tunnel for indications of vapor
 - o if none, continue testing

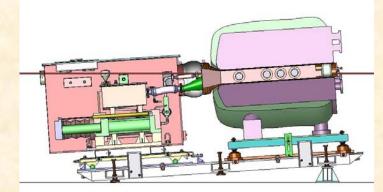
Note: If only one monitor registers vapors – could be a false-positive; continue to operate if #3 reads <0.0125 mg/m³

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Off-Normal Events (cont.)

- 2. Medium spill (100 ml) into secondary containment verified by vapor monitors # 1 and # 2
 - Continue to operate to the expected limit of the filter lifetime based on measured vapor concentration-analysis
 - Monitor for any changes to vapor readings in the secondary enclosure
 - Monitor air in the tunnel for indications of vapor; if none, continue testing
 - If approaching limit of filter life consider connecting the snorkel to extend the time of operation, if that allows completion of the test program.

(Note: Connecting the snorkel may require a waiting period of one or more days for a safe activation level; therefore the snorkel may be already connected but not turned on.)


OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Off-Normal Events (cont.)

- 3. Full inventory spill into the secondary containment
 - Monitor target instruments for clues to the source of leakage
 - Verify by checking sump tank level sensor, conductivity sensor, and nozzle pressure sensor
 - Cease operations, wait for cool down to visually inspect
 - Monitor air in the tunnel for indications of vapor
 - Seal inlet and outlet vents on secondary enclosure
 - Wait for additional cool down to permit hands on recovery and storage of Hg.

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Off-Normal Events (cont.)

- 4. Vapors detected outside of secondary containment by monitor # 3 - assume the secondary containment is breached or that the filter is saturated
 - Confirm with readings from #1 and #2 vapor monitors
 - If confirmed ... cease operations
 - If not confirmed ... continue operations
 - o Monitor target instruments for clues to the source of leakage
 - verify by checking sump tank level sensor, conductivity sensor, and nozzle pressure sensor
 - o Wait for cool down, visually inspect and sample local air
 - If levels are above safe limit (0.025 mg/m³??), inspect with full face mask-Hg respirator cartridges
 - Repair breach in enclosure if possible, pressure check, continue test operations

CERN limit ?? mg/m³

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY OSHA limit 0.050 mg/m³

ORNL limit 0.025 mg/m³

TTF limit 0.0125 mg/m³

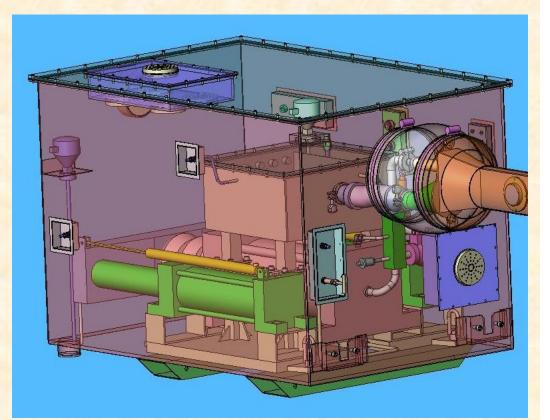
Miscellaneous Equipment For The Target System

Large Items	Small Items
Vacuum Cleaner – Dry	Merc-X Cleaning Solution
Snorkel	Sponges
2 Vapor Monitors	Plastic Buckets
Spare Filters (qty. TBD)	Plastic Pans
Glove Box	Gauze – roll
Vacuum Pump ?	Small Tools
	Vinyl Tape
	Herculite
	Plastic Bags – asst'd (1 gal. – 20 gal.)
	1-liter plastic bottles
	Lab Coats
	Tyvek Hooded Suits
	Nitrile Gloves
	Full Face Mask/Respirator Cartridges

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Post-Experiment Operations

- The target equipment (and the solenoid) will have neutron-induced activation
- Based on (H. Kirk 9/01/04)
 - 200 pulses
 - 16 x 10¹² protons/pulse (avg.)
 - 30 days of operation
 - Contact dose rate on the iron exterior will be:
 - after 1 hr 40 mrad/hr
 - after 1 day 21 mrad/hr
 - after 1 week 13 mrad/hr
 - after 1 mo. 5 mrad/hr
 - after 1 year 1 mrad/hr
 - Sergei Striganov (FNAL) performing separate analysis
- Move experiment out of beam line several days after conclusion, minimizing operator time near equipment


OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg Draining

- Extract Hg & prepare for shipment after several month cool-down
- CERN requirement that secondary containment not be opened during draining
- Will be trapped Hg in extraction tube, flex hoses, Hg cylinder, plenum

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Disassembly Operations

 ORNL will take back the Hg target system and the activated Hg and components

- Is hydraulic system and fluid activated, or can we adequately shield?
- Hopefully other uses for system will emerge

