

Muon Collider Design Workshop

BNL

December 3-7, 2007

Harold G. Kirk Brookhaven National Laboratory

U.S.

Brookhaven National Laboratory Fermi National Accelerator Laboratory Oak Ridge National Laboratory Princeton Europe CERN Rutherford Appleton Laboratory

MC Workshop Dec. 3-7

Maximize Pion/Muon Production Soft-pion Production High-Z materials

Tracks E>20 MeV

MC Workshop Dec. 3-7

The MERIT Experiment

MERcury Intense Target

MC Workshop Dec. 3-7

Sectional view of the MERIT Experiment

Seutrino Fack

Site of experiment at CERN

MC Workshop Dec. 3-7

- 14 and 24 GeV proton beam
- Up to 30 x 10¹² protons (TP) per 2.5µs spill
- Proton beam spot with $r \le 1.5 mm rms$
- 1cm diameter Hg Jet
- Hg Jet/proton beam off solenoid axis
 - Hg Jet 33 mrad
 - Proton beam 67 mrad
- Test 50 Hz operations
 - 20 m/s Hg Jet

- PS was run in a harmonic 4, 8, and 16 mode
- We can fill any of the rf buckets with sub-bunches at our discretion.
- Total PS fill can contain up to 30 TP.
- Fast extraction can accommodate entire 2.5 µs PS fill.
- Single turn extraction at 24 GeV
- Partial/multiple extraction possible at 14 GeV
- First Beam on Target October 17 2007

The PS Beam Profile allows for:

- Varying beam charge intensity from 1 TP to 30 TP.
- Studying influence of solenoid field strength on jet dispersal (vary B_z from 0 to 15T).
- Study possible cavitation effects by varying PS spill structure (Pump/Probe)

MC Workshop Dec. 3-7

MC Workshop Dec. 3-7

The Pump/Probe Detectors

 ACEM (Aluminum Cathode Electron Multiplier)
 Diamond

M. Palm, CERN - AB/ATB/EA

Diamond Left 20⁰ Response

Oct. 29, 2007 14 GeV 4TP 10T Field 15m/s Hg Jet

A 3T Pump Pulse and a 1TP Probe Pulse with 1ms delay

MERIT Beam Shots

The Optical Diagnostic Cameras

20 m/s Hg jet, 7 Tesla field

MC Workshop Dec. 3-7

Influence of Magnetic Field

Harold G. Kirk

MC Workshop Dec. 3-7

14 GeV Proton Beam on Hg Jet with Magnetic FieldViewport 1 at 2msViewport 3 at 26ms

October 26, 2007 Beam Pulse at 8:39pm Central European Daylight Time

Hg Jet 15m/s Solenoid Field 5T Proton Intensity 10TP

Harold G. Kirk Brookhaven National Laboratory

15TP 14GeV Proton Beam

Oct. 27, 2007 Solenoid Field at 5T

Viewport 2

Beam 5016, Hg 15m/s, 100µs/frame, Total 1.6ms

MC Workshop Dec. 3-7

20TP 14GeV Proton Beam

Oct. 27, 2007 Solenoid Field at 10T

Viewport 2

Beam 5020, Hg 15m/s, 100µs/frame, Total 1.6ms

MC Workshop Dec. 3-7

Viewport 3: Jet/proton interaction

MC Workshop Dec. 3-7

The 24 GeV 30TP shot

Beam pulse energy = 115kJ B-field = 15T Jet Velocity = 20 m/s Disruption Length = 28 cm

We will replace the 28cm disruption length (2 interaction lengths)

Then the jet transport time is 28cm/20m/s = 14ms →Rep rate of 70Hz

→Proton beam power at that rate is 115kJ *70 = 8MW

MC Workshop Dec. 3-7

4TP + 4TP Delay Study at 14 GeV

Single Turn Extraction → 0 Delay 4TP Probe extracted on subsequent turn → 3.2 μs Delay

4TP Probe extracted after 2nd full turn → 5.8 μs Delay

Target supports 14 GeV 4TP beam at 172kHz rep rate without disruption

MC Workshop Dec. 3-7

Disruption threshold based on proton beam characteristics Intensity variations Proton beam harmonic structure Disruption threshold based on solenoid field strength Pump/probe studies 15TP pump + 5TP probe with delays 2 to 700μs 24 GeV pump/probe studies with delays $< 2\mu$ s **Magnetodynamic studies** disruption (filamentation) velocities quadruple distortions **Proton beam spot size analysis**

MC Workshop Dec. 3-7

The MERIT Bottom Line

The Neutrino Factory/Muon Collider target concept has been validated for 4MW 50Hz operations.

MC Workshop Dec. 3-7