

Targetry Concept for a Neutrino Factory

EMCOG Meeting

CERN

November 18, 2003

Intense Proton Sources

World wide interest in the development of new proton drivers New physics opportunities are presenting themselves

- Neutron Sources
 - European Spallation Source
 - US Spallation Neutron Source
 - Japanese Neutron Source
- Kaons
 - RSVP at BNL.
 - KAMI at FNAL
- Muons
 - MECO and g-2 at BNL
 - SINDRUM at PSI
 - EDM at JPARC
 - Muon Collider
- Neutrinos
 - Superbeams
 - Neutrino Factories

Multi-MW New Proton Machines

High-power Targetry Challenges

High-average power and High-peak power issues

- Thermal management
 - Target melting
 - Target vaporization
- Thermal shock
 - Beam-induced pressure waves
- Radiation
 - Material properties
 - Radioactivity inventory
 - Remote handling

High-power Targetry Ronkonkoma, Long Island Sept. 2003

- New physics opportunities are demanding more intense proton drivers.
- 1 MW machines are almost here! 4 MW machines are planned.
- Targets for 1 MW machines exist but are unproven.
- But no convincing solution exists yet for the 4 MW class machines.
- Worldwide R&D efforts to develop targets for these new machines.
- A key workshop concern was the lack of worldwide support facilities where promising new ideas can be tested.

Neutrino Factory and Muon Collider

Neutrino Factory

- Key parameter is neutrino flux
- Source strength is pre-eminent issue
- Maximize protons-on-target in order to maximize pions/muons collected

Muon collider

$$L = \frac{N_1 N_2 f}{A} s^{-1} cm^{-2}$$

- Gain in luminosity proportional to the square of source strength
- Small beam cross-sectional area (beam cooling) is also important

Neutrino Factory Targetry Concept

Capture low P_T pions in high-field solenoid Use Hg jet tilted with respect to solenoid axis Use Hg pool as beam dump

Engineered solution--P. Spampinato, ORNL

Achieving Intense Muon Beams

Maximize Pion/Muon Production

- Soft Pion Production
 - Higher Z material
 - High energy deposition
 - o Mechanical disruption
- High Magnetic Field

High-Z Materials

Key Properties

- Maximal soft-pion production
- High pion absorption
- High peak energy deposition
- •Potential for extension beyond 4 MW (liquids)

Key Issues

- •Jet dynamics in a high-field solenoid
- Target disruption
- •Achievement of near-laminar flow for a 20 m/s jet

E951 Hg Jet Tests

- 1cm diameter Hg Jet
- 24 GeV 4 TP Proton Beam
- No Magnetic Field

t = 0.75 ms

t = 2 ms

t = 18 ms

CERN Passive Hg Thimble Test

Exposures to a BNL AGS 24 GeV 2 TP beam. T=0, 0.5, 1.6 and 3.4 ms.

CERN Hg Thimble Results

Simulations—Prykarpatskyy, BNL

Bulk ejection velocity as a function Of beam spot size. ISOLDE data is 17 TP at 1.4 GeV.

NATIONAL LABORATORY

Key E951 Results

- Hg jet dispersal proportional to beam intensity
- Hg jet dispersal ~ 10 m/s for 4 TP 24 GeV beam
- Hg jet dispersal velocities ~ ½ times that of "confined thimble" target
- Hg dispersal is largely transverse to the jet axis --longitudinal propagation of pressure waves is suppressed
- Visible manifestation of jet dispersal delayed 40 μs

CERN/Grenoble Hg Jet Tests

This qualitative behaviour can be observed in all events.

- 4 mm diameter Hg Jet
- v = 12 m/s
- 0, 10, 20T Magnetic Field
- No Proton Beam

A. Fabich, J. Lettry Nufact'02

Slice's

Key Jet/Magnetic Field Results

•The Hg jet is stabilized by the 20 T magnetic field

•Minimal jet deflection for 100 mrad angle of entry

•Jet velocity reduced upon entry to the magnetic field

Simulations at BNL (Samulyak)

Gaussian energy deposition profile Peaked at 100 J/g. Times run from 0 to $124 \mu s$.

Jet dispersal at t=100 μs with magnetic Field varying from B=0 to 10T

Bringing it all Together

We wish to perform a proof-of-principle test which will include:

- A high-power intense proton beam (16 to 32 TP per pulse)
- A high (> 15T) solenoidal field
- A high (> 10m/s) velocity Hg jet
- A ~1cm diameter Hg jet

Experimental goals include:

- Studies of 1cm diameter jet entering a 15T solenoid magnet
- Studies of the Hg jet dispersal provoked by an intense pulse of a proton beam in a high solenoidal field
- Studies of the influence of entry angle on jet performance
- Confirm Neutrino factory/Muon Collider Targetry concept

High Field Pulsed Solenoid

- 70° K Operation
- 15 T with 4.5 MW Pulsed Power
- 15 cm warm bore
- 1 m long beam pipe

Peter Titus, MIT

Pulsed Solenoid Performance

- •5T Peak Field with 2 inner coils; 540 KVA; 80° K
- •10T Peak Field with 2 inner coils; 2.2 MVA PS; 72° K
- •15T Peak Field with 3 coils; 2.2 MVA PS; 30° K
- •15T Peak Field with 3 coils; 4.4 MVA PS; 70° K

Possible Target Test Station Sites

Accelerator Complex Parameters:

Parameter	BNL AGS	CERN PS	RAL ISIS	LANCE WNR	JPARC RCS	JPARC MR
Proton Energy, GeV	24	24	0.8	0.8	3	50
p/bunch, 10 ¹²	6	4	10	28	42	42
Bunch/cycle	12	8	2	1	2	9
p/cycle, 10 ¹²	72	32	20	28	83	300
Cycle length, μs	2.2	2.0	0.3	0.25	0.6	4.2
Availability (?)	07	06	06	Now	08	09

Possible Targetry Test at JPARC

Letter of Intent submitted January 21, 2003 – presented June 27, 2003

Target Test Site at CERN

Possible Experiment Location at CERN

Letter of Intent to submitted Oct. 23, 2003

Harold G. Kirk

Letter of Intent-- Isolde and nToF Committee

CERN-INTC-2003-033 INTC-I-049 23 October 2003 Updated: 31 Oct 2003

A Letter of Intent to the ISOLDE and Neutron Time-of-Flight Experiments Committee

Studies of a Target System for a 4-MW, 24-GeV Proton Beam

J. Roger J. Bennett¹, Luca Bruno², Chris J. Densham¹, Paul V. Drumm¹, T. Robert Edgecock¹, Helmut Haseroth², Yoshinari Hayato³, Steven J. Kahn⁴, Jacques Lettry², Changguo Lu⁵, Hans Ludewig⁴, Harold G. Kirk⁴, Kirk T. McDonald⁵, Robert B. Palmer⁴, Yarema Prykarpatskyy⁴, Nicholas Simos⁴, Roman V. Samulyak⁴, Peter H. Thieberger⁴, Koji Yoshimura³

Spokespersons: H.G. Kirk, K.T. McDonald Local Contact: H. Haseroth

BROOKHAVEN NATIONAL LABORATORY

Participating Institutions

- 1) RAL
- 2) CERN
- 3) KEK
- 4) BNL
- 5) Princeton University

The TT2a Beam Line

We propose running without longitudinal bunch compression allowing for a reduced beam spot size of ~ 2mm rms radius.

Original Cryogenic Concept at BNL

- BNL specific solution
- Heat exchanger
- LH₂ or LN₂ primary cooling
- Circulating gaseous He secondary cooling

Simplified Cryogenic System

Battery Power Supply R&D

Harold G. Kirk

Battery Power Supply (Cont)

Mechanical Switch capable of 4.4 MW Pulsed System

Pulsed Solenoid Project Cost Profile

Magnet

Fabrication \$410 K

Monitoring \$ 80 K

Testing \$ 90 K

Shipping \$ 15 K

Cryogenic System (LN₂ without Heat Exchanger)

Cryo \$ 300 K

PS (Battery array with switching/charging/bussing)

PS System \$ 460 K

Total Project Cost \$1355 K

