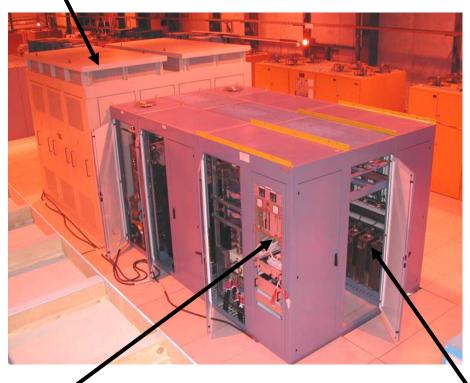


Summary of Engineering Meetings


High Power Target Experiment CERN March 30-April 2, 2004

Main characteristics of power converter type ALICE/LHCb, rated 950V, 6500A

2 x Power transformers in parallel, housed in the same cubicle

Total DC output ratings:

6500Adc, 950Vdc, 6.7 MW

AC input ratings (per rectifier bridge):

2858Arms, 900Vac (at no load), 4.5 MVA

Each power transformer ratings

Primary side: 154Arms, 18kVac Secondary side: 3080Arms, 900Vac Nominal power: 4.8 MVA

Other

- Air forced cooling;- Fed by two18 kV lines

High precision current control

electronics

2 x rectifier bridges in parallel

Main technical details still to be verified

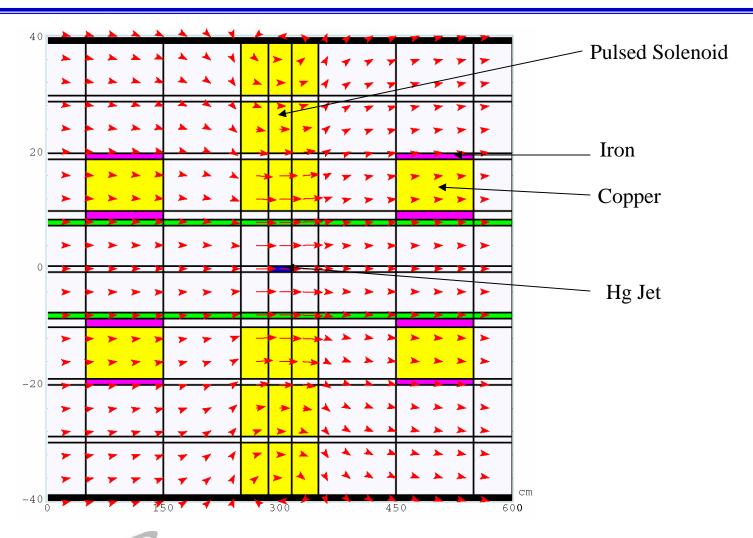
- -Best solution for connecting to a 18kV cell (CERN TS-EL group)
- one available cell at building 269;
- one available cell at building 193 (AD);
- two used cells at building 287 (A7) check for the possibility of joining a new one temporarily ?;
- check for other solutions, if any

-Location of the power converter (CERN AB/PO group)

- One solution, still need to be verified!!!!
In the ISR gallery,
availability of the space?? (today used
for storage of material);

the capacity of the existing crane?

- check for other solutions, if any


-Cabling paths for the power lines (CERN TS/EL group)

NATIONAL LABORATORY

MARS Dose Calculation

Residual Contact Dose Rate

Assume:

- •200 pulses
- •16 x 10¹² protons/pulse average
- •30 days running

Then the contact radiation on the iron exterior will be:

After 1 hr 40 mrad/hr

After 1 day 21 mrad/hr

After 1 week 13 mrad/hr

After 1 mo. 5 mrad/hr

After 1 year 1 mrad/hr

End of Exposure- 1 Month delay

Element	ts Curies	Important contr	Important contributing Isotopes		
hg	0.00043070	(up to 1% of activation levels)			
au	0.00034510	Hg 203	4.3 x 10 ⁻⁴ Curies		
te	0.00028140	Au 195	3.1 x 10 ⁻⁴ Curies		
ir	0.00027650	Te 121	2.3 x 10 ⁻⁴ Curies		
ag	0.00026910	Ir 188, 189	9.6 x 10 ⁻⁵ Curies 1.7 x 10 ⁻⁴ Curies		
in	0.00023670	Ag 105	2.0 x 10 ⁻⁴ Curies		
sn	0.00023540	In 113	2.3 x 10 ⁻⁴ Curies		
eu	0.00018110	Sn 113	2.3 x 10 ⁻⁴ Curies		
rh	0.00018070	Eu 146, 147	5.7 x 10 ⁻⁵ Curies 6.5 x 10 ⁻⁵ Curies		
i	0.00014630	Rh 103	1.3 x 10 ⁻⁴ Curies		
xe	0.00014040	I 125	1.4 x 10 ⁻⁴ Curies		
gd	0.00012370	Xe 127	1.4 x 10 ⁻⁴ Curies		
pd	0.00012230				
cs	0.00012100				
W	0.00011980				
Total	4.3 x 10 ⁻³ Curies				

End of Exposure- 1 Year delay

Element	s Curies	Important contr	ibuting Isotopes	
au	0.00011470	(up to 1% of activation levels)		
ag	0.00004882	Au 195	1.1 x 10 ⁻⁴ Curies	
cd	0.00004671	Ag 109	4.7 x 10 ⁻⁵ Curies	
in	0.00004633	Cd 109	4.7 x 10 ⁻⁵ Curies	
sn	0.00004630	In 113	4.6 x 10 ⁻⁵ Curies	
ta	0.00001930	Sn 113	4.6 x 10 ⁻⁵ Curies	
gd	0.00001678	Ta 179	1.9 x 10 ⁻⁵ Curies	
lu	0.00001345	Gd 151, 153	7.4 x 10 ⁻⁶ Curies	8.1 x 10 ⁻⁶ Curies
os	0.00001287	Lu 172, 173	5.3 x 10 ⁻⁶ Curies	8.1 x 10 ⁻⁶ Curies
ce	0.00001223	Os 185	1.3 x 10 ⁻⁵ Curies	
rh	0.00001145	Ce 139	1.2 x 10 ⁻⁵ Curies	
pm	0.00001097	Pm 143	9.3 x 10 ⁻⁶ Curies	
W	0.00001089	Sm 145	1.0 x 10 ⁻⁵ Curies	
sm	0.00001046	W 181	1.1 x 10 ⁻⁵ Curies	
hf	0.00000957			
Total	4.9 x 10 ⁻⁴ Curies			

Issues Remaining

- What is the beam profile on the nTOF lead target without the Hg target and without the pulsed solenoid on.
- What are the beam intensity constraints for the nTOF target. $4 \times 7 \times 10^{12}$ protons in 16 seconds is mentioned as a constraint. What if it all comes in one μs .
- •What is the impact of the experiment's beam windows on the nTOF target.
- •Is the isotope inventory acceptable. Thomas Otto will reply.
- •A continual issue is the lack of ventilation in the nTOF tunnel. nTOF itself is threatened with shutdown beginning in 06 if the issue is not resolved.
- ODH (oxygen deficiency hazard) related to LN₂ operations must be addressed.
- •Personal Radiation Plan

Experiment Site Considerations

Nufact Study 2 Beam Parameters:

- 16 TP (10¹² Protons) per bunch 24 GeV, 1 MW Scenario
- 32 TP per bunch (x2 rep rate) 24 GeV, 4 MW Scenario

BNL capabilities

4 TP per bunch E951 experience

6 to 8 TP foreseen (with bunch merging)

No multi-bunch single turn extraction (g-2 rebuild)

CERN capabilities

5 TP per bunch normal operation

7 TP multi-bunches foreseen (for CNGS)

Multi-bunch single turn extraction available

4 bunch flexible fill of PS from booster available

Pump-Probe capability

