

The IDS-NF Target Baseline

IDS-NF Plenary Meeting

Rutherford Appleton Lab

September 20-25, 2010

Harold G. Kirk Brookhaven National Laboratory

The Neutrino Factory Target Concept

NATIONAL LABORATORY

The Study 2 Target System

Target System Exploded View

- All insertion/extraction from upstream end
- Locating & supporting features not shown – will require additional space

Features:

- 24 GeV, <u>4Tp</u> Proton Beam
- •1 cm, <u>2.5m/s</u> Hg Jet
- <u>No</u> Magnetic Field

Key Results:

- Dispersal velocities ≤ 10 m/s
- Dispersal Delay $\geq 40 \mu s$

Experiment ran April 2001

Target Concept Validation MERIT at CERN

MERcury Intense Target

Experiment ran Oct./Nov. 2007

Cross-sectional view of the MERIT Experiment

OT

5 T

10 T

15 T

Jet velocities: 15 m/s

att south and south the south

NATIONAL LABORATORY

Substantial surface perturbations mitigated by high-magnetic field.

MHD simulations (R. Samulyak):

As As As a state the second and a second and a second a s E For a long to service and a for the service of the service and

Land Anna addition Arrow

Pump-Probe Data Analysis

Production Efficiency: Normalized Probe / Normalized Pump

Ratio Target In-Out/Target Out

No loss of pion production for bunch delays of 40 and 350 μ s, A 5% loss (2.5- σ effect) of pion production for bunches delayed by 700 μ s.

Study with 4 Tp + 4 Tp at 14 GeV, 10 T

Single-turn extraction → 0 delay, 8 Tp

4-T*p* probe extracted on subsequent turn → 3.2 µs delay

4-T*p* probe extracted after 2nd full turn → 5.8 µs Delay

Threshold of disruption is > 4 Tp at 14 Gev, 10 T.

⇒Target supports a 14-GeV, 4-T*p* beam at 172 kHz rep rate without disruption.

MARS15 Study of the Hg Jet Target Geometry

Previous results: Radius 5mm, $\theta_{beam} = 67mrad$ $\Theta_{crossing} = 33mrad$

Optimized Meson Production

X. Ding, UCLA

Protom Beam Path Length inside the Mercury Jet

Nuclear interaction length for Hg is 14.6cm

Mars14 vs Mars15

Multiple Proton Beam Entry Points

Proton beam entry points upstream of jet/beam crossing

Multiple Proton Beam Entries

Meson Production vs β*

MARS Energy Deposition Studies

MARS15 study of Study 2 configuration yields 25KW energy deposition in SC1 alone

BeWindow (z=600cm)

NATIONAL LABORATORY

Reconfigure SC magnets

Increase the SC ID's. Fill released volume with shielding.Rult: Total energy deposition in all SC's reduced to 2.4kW.But SC magnets around target are now extremely difficult.

Require an iterative approach

Proton Beam Energy	8 GeV
Rep Rate	50 Hz
Bunch Structure	3 bunches, 280 µsec total
Bunch Width	2 ± 1 ns
Beam Radius	1.2 mm (rms)
Beam β*	≥ 30cm
Beam Power	4 MW (3.125 × 1015 protons/sec)

Target type	Free mercury jet
Jet diameter	8 mm
Jet velocity	20 m/s
Jet/Solenoid Axis Angle	96 mrad
Proton Beam/Solenoid Axis Angle	96 mrad
Proton Beam/Jet Angle	27 mrad
Capture Solenoid Field Strength	20 T

Backup Slides

General Target Issues

- Thermal management (~3MW power deposited)
- Shielding (SC Solenoids required)
- Target integrity (Thermal Shock)
- Target regeneration (50Hz rep-rate)
- 20T environment

Liquid Hg specific issues

- Stable fluid flow (Nozzle performance)
- Hg handling system

Proton Driver

- 4 MW Beam Power
- 5-15 GeV KE (8GeV is currently favored)
- 50 Hz operation
- 3 Bunch structure (280µs total favored)
- **Target System**
- 20T Solenoid Magnet
- Liquid Jet
- 20 m/s flow rate (50Hz operations)
- High-Z (Hg favored)

