

High-Power Targets H.G. Kirk

Applications of High-Intensity Proton Accelerators

FNAL

October 20, 2009

Harold G. KirkBrookhaven National Laboratory

WG1 High-Power Target Issues

WG2 Target Station Design and Requirements for Muon Colliders and Neutrino Factories

Target

Secondary Beams for New Phyisics Neutrons (e.g. for neutron sources) ^π's (e.g. for Super ν Beams) μ's (e.g. for Muon Colliders, Neutrino Factories) Kaons (e.g. for rare physics processes) γ's (e.g. for positron production) Ion Beams (e.g. RIA, EURISOL, β-Beams)

Harold G. Kirk3

AHIPA, FNAL Oct. 19-21, 2009

High-average power and high-peak power issues

- **Thermal management**
	- **Target melting**
	- **Target vaporization**
- **Radiation**
	- **Radiation protection**
	- **Radioactivity inventory**
	- **Remote handling**
- **Thermal shock**
	- **Beam-induced pressure waves**
- **Material properties**

Harold G. Kirk

4

Choices of Target Material

Solid

- **Fixed**
- **Moving**
- **Particle Beds**
- **Liquid**
- **Hybrid**
	- **Particle Beds in Liquids**
	- **Pneumatically driven Particles**

Key Target Issues for high-power targets

- **What are the power limits for solid targets?**
- **Search for suitable target materials (solid and liquid) for primary beams > 1MW**

PA, FNAL Oct. 19-21, 2009

- **Optimal configurations for solid and liquid targets**
- **Effects of radiation on material properties**
	- **Target materials**
	- **Target infrastructure**
- **Material limits due to fatigue**
- **Design of reliable remote control systems**

NF/MC Target System

A 4MW Target Hall

Phil Spampanato, ORNL

_{itr}ino Fa_c

When the energy deposition time frame is on the order off or less than the energy deposition dimensions divided by the speed of sound then pressure waves generation can be an important issue.

Time frame = beam spot size/speed of sound

Illustration

Time frame = 1cm / 5x10 $3 \text{ m/s} = 2 \text{ }\mu\text{s}$

CERN ISOLDE Hg Target Tests

$$
Stress = Y \alpha_T U / C_V
$$

- **Where Y = Material modulus**
	- $\alpha_{\rm T}$ = Coefficient of Thermal Expansion
	- **U = Energy deposition**
	- C_V = Material heat capacity

When the pressure wave amplitude exceeds material tensile strength then target rupture can occur. This limit is material dependant.

Example: Graphite vs Carbon Composit

RRN NATIONAL LABORATORY
AHIPA, FNAL Oct. 19-21, 2009 12

Strain Gauge Measurements

BNL E951: 24 GeV, 3 x 1012 protons/pulse

Harold G. Kirk

Stress =

Carbon-Carbon Composite

Super-Invar CTE measurements

BNL BLIP

Peak Proton fluence 1.3 x 1020 protons/cm 2

Recovery of low α T

Carbon-Carbon anneals at ~300

 $^0\mathrm{C}$ Super-Invar anneals at ~600 $^0\mathrm{C}$

eutrino F

The International Design Study Baseline

eutrino Fact

Number of bunches per pulse 1-3 Separated bunch extraction delay \geq 17 μ s **Pulse duration:** ≤ 40 μ s

The IDS Proton Driver Baseline Parameters

Driver Beam Bunch Requirement

Proton beam bunch length requirements due to rf incorporated in the downstream phase rotation and transverse cooling sections.

```
Bunch length = 
2
± 1 ns
```


MARS15 Study of the Hg Jet Target Geometry

Previous results: Radius 5mm, θbeam =67mrad ^Θcrossing = 33mrad

Optimized Meson Production X. Ding, UCLA

Jim Strait – NUFACT09

 $\sigma(\pi^+)$ /E_{beam}, integrated over the measured phase space (different for the two groups).

HARP Cross-Sections x NF Capture Acceptance

HARP pion production cross-sections, weighted by the acceptance of the front-end channel, and normalized to equal incident beam power, are relatively independent of beam energy.

Harold G. KirkNuFact '09 **AHIPA, FNA Pual Control 24 24** 24 24

Multiple Proton Beam Entry Points

Trajectory of the Proton Beam

Multiple Entry Entries

Harold G. KirkNATIONAL LABORATORY
AHIPA, FNAL Oct. 19-21, 2009 28

Meson Production vs β *

Meson Production $\textbf{loss} \leq 1\%$ for **β* ≥ 30cm**

The MERIT Experiment at CERN

eutrino Facto

Installed in the CERN TT2a Line

NATIONAL LABORATORY
AHIPA, FNAL Oct. 19-21, 2009 31

Optical Diagnostics

1 cm

Viewport 2 100 μs/fras Velocity Analysis

Viewport 3 500 μs/fras Disruption Analysis

NATIONAL LABORATORY
AHIPA, FNAL Oct. 19-21, 2009 32

0T 5 T 10 T 15 T

Jet velocities: 15 m/s

Substantial surface perturbations mitigated by high-magnetic field.

MHD simulations (W. Bo, SUNYSB):

completed and the complete the complete ETHRE CONTROL 196619 COMPUTER CONTROLLER CONTROL CONTROLLER

Asharid Allitte Are

all solved was the lan

Disruption Analysis

Disruption lengths reduced with higher magnetic fields Disruption thresholds increased with higher magnetic fields

Harold G. KirkNATIONAL LABORATORY
AHIPA, FNAL Oct. 19-21, 2009 34

10TP, 10T V = 54 m/s Velocity of Splash: Measurements at 24GeV

t=0.175 ms t=0.375 ms

20TP, 10T $t=0$

t=0.075 ms **V = 65 m/s**

NATIONAL LABORATORY

 $10^{2480kA10k1}$ **AHIPA, FNAL Oct. 15-21, 2009** t=0.375 ms

velocities are suppressed by magnetic

Test pion production by trailing bunches after disruption of the mercury jet due to earlier bunches

At 14 GeV, the CERN PS can extract several bunches during one turn (pump), and then the remaining bunches at a later time (probe).

Pion production was monitored for both target-in and target-out events by a set of diamond diode detectors.

Pump-Probe Data Analysis

Production Efficiency: Normalized Probe / Normalized Pump

Ratio Target In-Out/Target Out

No loss of pion production for bunch delays of 40 and 350 s, A 5% loss (2.5- σ effect) of pion production for bunches delayed by 700 μs.

Harold G. KirkNATIONAL LABORATORY
AHIPA, FNAL Oct. 19-21, 2009 38

Single-turn extraction → 0 delay, 8 Tp

4-T *p* **probe extracted on subsequent turn 3.2 μs delay**

4-T*p* **probe extracted after 2nd full turn5.8 μs Delay**

PUMP: 8 bunches, 4 \times 10 12 protons

PROBE: 8 bunches, 4 \times 10 12 protons

Threshold of disruption is > 4 T *p* **at 14 Gev, 10 T.**

Target supports a 14-GeV, 4-T *p* **beam at 172 kHz rep rate without disruption.**

Harold G. Kirk

NATIONAL LABORATORY
AHIPA, FNAL Oct. 19-21, 2009 39

Key MERIT Results

- **Jet surface instabilities reduced by high-magnetic fields**
- **Hg jet disruption mitigated by magnetic field**
	- **20 m/s operations allows for up to 70Hz operations**
- **115kJ pulse containment demonstrated**

8 MW capability demonstrated

- **Hg ejection velocities reduced by magnetic field**
- **Pion production remains stable up to 350 μs after previous beam impact**
- **170kHz operations possible for sub-disruption threshold beam intensities**

Harold G. KirkAHIPA, FNAL Oct. 19-21, 2009 40

The Neutrino Factory/Muon Collider target concept has been validated for 4MW, 50Hz operations.

BUT

We must now develop a target system which will support 4MW operations

MERIT and the IDS Baseline

NERIT

Number of bunches per pulse 1-3 Separated bunch extraction delay \geq 17 μ s **Pulse duration:** ≤ 40 μ s \geq 6 µs $≤ 350 \mu s$

The IDS Proton Driver Baseline Parameters

Follow-up: Engineering study of a CW mercury loop + 20-T capture magnet

- **Splash mitigation in the mercury beam dump.**
- **Possible drain of mercury out upstream end of magnets.**
- **Downstream beam window.**
- **Water-cooled tungsten-carbide shield of superconducting magnets.**
- **HTS fabrication of the superconducting magnets.**
- **Improved nozzle for delivery of Hg jet**

- 0 **MERIT has successfully demonstrated the Neutrino Factory/Muon Collider target concept**
- **Target studies are continuing within IDS-NF framework**
- **The infrastructure for a 4MW target system needs to be designed/engineered**

Backup Slides

The MERIT Experiment at CERN

MERcury Intense Target

- \bullet **14 and 24 GeV proton beam**
- \bullet • Up to 30 x 10¹² protons (TP) per 2.5µs spill
- **1cm diameter Hg Jet**
- **Hg Jet/proton beam off solenoid axis**
	- \blacksquare **Hg Jet 33 mrad to solenoid axis**
	- **Proton beam 67 mrad to solenoid axis**
- **Test 50 Hz operations**
	- \blacksquare **20 m/s Hg Jet**

Harold G. KirkPA, FNAL Oct. 19-21, 2009 47

The Jet/Beam Dump Interaction

T. Davonne, RAL

wtrino Fac

