

# High-Power Targets H.G. Kirk

# **Applications of High-Intensity Proton Accelerators**

**FNAL** 

October 20, 2009



Harold G. Kirk Brookhaven National Laboratory



#### **Subject Matter Covered Here**

#### **WG1 High-Power Target Issues**

WG2 Target Station Design and Requirements for Muon Colliders and Neutrino Factories



#### The Challenge: Convert to Secondaries

#### **Intense Primary Beam**

#### **Intense Secondary Beam**





**Target** 

**Secondary Beams for New Physics** 

**Neutrons (e.g. for neutron sources)** 

 $\pi$ 's (e.g. for Super v Beams)

μ's (e.g. for Muon Colliders, Neutrino Factories)

Kaons (e.g. for rare physics processes)

γ's (e.g. for positron production)

Ion Beams (e.g. RIA, EURISOL, β-Beams)





## **High-power Targetry Challenges**

#### High-average power and high-peak power issues

- Thermal management
  - Target melting
  - Target vaporization
- Radiation
  - Radiation protection
  - Radioactivity inventory
  - Remote handling
- Thermal shock
  - Beam-induced pressure waves
- Material properties





#### **Choices of Target Material**

- Solid
  - Fixed
  - Moving
  - Particle Beds
- Liquid
- Hybrid
  - Particle Beds in Liquids
  - Pneumatically driven Particles





#### **High-Power Targetry R&D**

#### **Key Target Issues for high-power targets**

- What are the power limits for solid targets?
- Search for suitable target materials (solid and liquid) for primary beams > 1MW
- Optimal configurations for solid and liquid targets
- Effects of radiation on material properties
  - Target materials
  - Target infrastructure
- Material limits due to fatigue
- Design of reliable remote control systems





# NF/MC Target System





# A 4MW Target Hall



Phil Spampanato, ORNL





#### **High-peak Power Issues**

When the energy deposition time frame is on the order off or less than the energy deposition dimensions divided by the speed of sound then <u>pressure waves generation</u> can be an important issue.

Time frame = beam spot size/speed of sound

Illustration

Time frame = 1cm /  $5x10^3$  m/s = 2  $\mu$ s





## **CERN ISOLDE Hg Target Tests**

time



A. Fabich, J. Lettry

Pulse length

Velocities (pulse length)



NATIONAL LABORATORY

Proton beam 5.5 Tp per Bunch.

intensity

Pulse length



Bunch Separation [ns]

Harold G. Kirk



#### Pressure Wave Amplitude

$$Stress = Y \alpha_T U / C_V$$

Where Y = Material modulus

 $\alpha_T$  = Coefficient of Thermal Expansion

**U** = Energy deposition

 $C_V$  = Material heat capacity

When the pressure wave amplitude exceeds material tensile strength then <u>target rupture can occur</u>. This limit is material dependant.



NATIONAL LABORATORY

#### **Example: Graphite vs Carbon Composit**





## Strain Gauge Measurements













NATIONAL LABORATORY

## Carbon-Carbon Composite





## Super-Invar CTE measurements





#### Peak Proton fluence 1.3 x 10<sup>20</sup> protons/cm<sup>2</sup>





## Recovery of low $\alpha_T$



Carbon-Carbon anneals at ~300°C

Super-Invar anneals at ~600°C





#### The International Design Study Baseline





## The IDS Neutrino Factory Baseline

Mean beam power 4 MW

Pulse repetition rate 50 Hz

Proton kinetic energy 5-10-15 GeV

Bunch duration at target 1-3 ns rms

Number of bunches per pulse 1-3

Separated bunch extraction delay  $\geq 17 \mu s$ 

Pulse duration:  $\leq 40 \mu s$ 

#### The IDS Proton Driver Baseline Parameters





#### The Neutrino Factory Bunch Structure







### Driver Beam Bunch Requirement



Proton beam bunch length requirements due to rf incorporated in the downstream phase rotation and transverse cooling sections.

Bunch length =  $2 \pm 1$  ns



#### MARS15 Study of the Hg Jet Target Geometry



Previous results: Radius 5mm,  $\theta_{beam}$  =67mrad  $\Theta_{crossing}$  = 33mrad





## **Optimized Meson Production**

X. Ding, UCLA



target at  $E_n \sim 6-8 \text{ GeV},$ 

Comparison of low-energy result with HARP data ongoing

NATIONAL LABORATORY





#### Jim Strait – NUFACT09

 $\sigma(\pi^{+-})$  / $E_{beam}$ , integrated over the measured phase space (different for the two groups).



σ peaks in range 4~7 GeV => no dramatic low E drop-off

BROOKHAVEN
NATIONAL LABORATORY

NuFact '09

Harold G. Kirk



#### HARP Cross-Sections x NF Capture Acceptance



HARP pion production cross-sections, weighted by the acceptance of the front-end channel, and normalized to equal incident beam power, are relatively independent of beam energy.



#### **Multiple Proton Beam Entry Points**



Proton beam entry points upstream of jet/beam crossing



## Trajectory of the Proton Beam



Selected proton beam transverse trajectories relative to the Hg Jet.



# Multiple Entry Entries



A 10% swing in meson production efficiency



## Influence of \$\beta^\*\$ of the Proton Beam







# Meson Production vs β\*



Meson
Production
loss  $\leq 1\%$  for  $\beta^* \geq 30$ cm

Harold G. Kirk



#### The MERIT Experiment at CERN





30



NATIONAL LABORATORY

# Installed in the CERN TT2a Line



Harold G. Kirk



# **Optical Diagnostics**



1 cm



Viewport 2 100µs/fras Velocity Analysis

Viewport 3 500µs/fras Disruption Analysis

BROOKHAVEN NATIONAL LABORATORY

Harold G. Kirk



## Stabilization of Jet by High Magnet Field



Jet velocities: 15 m/s

Substantial surface perturbations mitigated by high-magnetic field.

#### MHD simulations (W. Bo, SUNYSB):













# Disruption Analysis



Disruption lengths reduced with higher magnetic fields
Disruption thresholds increased with higher magnetic fields





#### Velocity of Splash: Measurements at 24GeV

10TP, 10T V = 54 m/s



t=0 20TP, 10T



V = 65 m/s





t=0.175 ms



t=0.375 ms



NATIONAL LABORATORY





AHIPA05PNAL Oct. 15-021752009



t=0.375 ms



NATIONAL LABORATORY

## Filament Velocities



Ejection velocities are suppressed by magnetic field

Harold G. Kirk



## **Pump-Probe Studies**

Test pion production by trailing bunches after disruption of the mercury jet due to earlier bunches

At 14 GeV, the CERN PS can extract several bunches during one turn (pump), and then the remaining bunches at a later time (probe).

Pion production was monitored for both target-in and target-out events

by a set of diamond diode detectors.

NATIONAL LABORATORY





## Pump-Probe Data Analysis

**Production Efficiency:** Normalized Probe / Normalized Pump



No loss of pion production for bunch delays of 40 and 350  $\mu$ s, A 5% loss (2.5- $\sigma$  effect) of pion production for bunches delayed by 700  $\mu$ s.





## Study with 4 Tp + 4 Tp at 14 GeV, 10 T



Single-turn extraction

→ 0 delay, 8 Tp



4-Tp probe extracted on subsequent turn

→ 3.2 μs delay



4-Tp probe extracted after 2nd full turn

→ 5.8 µs Delay



NATIONAL LABORATORY

Threshold of disruption is > 4 Tp at 14 Gev, 10 T.

⇒Target supports a 14-GeV, 4-Tp beam at 172 kHz rep rate without disruption.

Harold G. Kirk



## **Key MERIT Results**

- Jet surface instabilities reduced by high-magnetic fields
- Hg jet disruption mitigated by magnetic field
  - 20 m/s operations allows for up to 70Hz operations
- 115kJ pulse containment demonstrated
  - **8 MW** capability demonstrated
- Hg ejection velocities reduced by magnetic field
- Pion production remains stable up to 350µs after previous beam impact
- 170kHz operations possible for sub-disruption threshold beam intensities





## The MERIT Bottom Line

The Neutrino Factory/Muon Collider target concept has been validated for 4MW, 50Hz operations.

#### BUT

We must now develop a target system which will support 4MW operations





### MERIT and the IDS Baseline

#### **NERIT**

Mean beam power 4 MW OK
Pulse repetition rate 50 Hz OK

Proton kinetic energy 5-10-15 GeV

Bunch duration at target 1-3 ns rms

Number of bunches per pulse 1-3

Separated bunch extraction delay  $\geq 17 \mu s$ 

Pulse duration:  $\leq 40 \mu s$ 

 $\geq 6 \mu s$ 

 $\leq$  350  $\mu$ s

#### The IDS Proton Driver Baseline Parameters





## **IDS-NF Target Studies**

# Follow-up: Engineering study of a CW mercury loop + 20-T capture magnet

- Splash mitigation in the mercury beam dump.
- Possible drain of mercury out upstream end of magnets.
- Downstream beam window.
- Water-cooled tungsten-carbide shield of superconducting magnets.
- HTS fabrication of the superconducting magnets.
- Improved nozzle for delivery of Hg jet



## Summary

- MERIT has successfully demonstrated the Neutrino Factory/Muon Collider target concept
- •Target studies are continuing within IDS-NF framework
- The infrastructure for a 4MW target system needs to be designed/engineered



### **Backup Slides**





## The MERIT Experiment at CERN



#### **MERcury Intense Target**





## Profile of the Experiment

- 14 and 24 GeV proton beam
- Up to 30 x 10<sup>12</sup> protons (TP) per 2.5μs spill
- 1cm diameter Hg Jet
- Hg Jet/proton beam off solenoid axis
  - Hg Jet 33 mrad to solenoid axis
  - Proton beam 67 mrad to solenoid axis
- Test 50 Hz operations
  - 20 m/s Hg Jet





## The Jet/Beam Dump Interaction



T. Davonne, RAL





## **Shielding the Superconducting Coils**

MARS
Dose
Rate
calculations







ld G. Kirk

49