

The High-Power Target Experiment

NUFACT'04

Osaka, Japan

July 27, 2004

Harold G. Kirk Brookhaven National Laboratory

Intense Proton Sources

World wide interest in the development of new MW-class proton drivers New physics opportunities utilizing intense secondary beams are presenting themselves

- Neutron Sources
 - European Spallation Source
 - US Spallation Neutron Source
 - Japanese Neutron Source
- •Kaons
 - RSVP at BNL
 - KAMI at FNAL
- •Muons
 - MECO and g-2 at BNL
 - SINDRUM at PSI
 - EDM at JPARC
 - Muon Collider
- Neutrinos
 - Superbeams
 - Neutrino Factories
 - Beta-beams

Multi-MW New Proton Machines

High-average power and high-peak power issues

- Thermal management
 - Target melting
 - Target vaporization
- Thermal shock
 - Beam-induced pressure waves
- Radiation
 - Material properties
 - Radioactivity inventory
 - Remote handling

NATIONAL LABORATORY

Achieving Intense Muon Beams

Key Properties

- Maximal soft-pion production
- •Both pion signs are collected
- •Liquid (Hg) has potential for extension beyond 4 MW

Key Issues

- •High pion absorption
- •High peak energy deposition
- •Jet dynamics in a high-field solenoid
- •Target disruption in a high-field solenoid
- •Achievement of near-laminar flow for a 20 m/s jet

The SPL Neutrino Horn

NATIONAL LABORATORY

Neutron Production using Hg

REPELACEABLE HOZZLE INSERT HERCURY SUPPLY HERCURY SUPPLY PROTON BEAM TUBE HAGNET SUPPLY LINES MACHET SUPPLY AND SHIELD CASING

IRON CORE

Capture low P_T pions in a high-field solenoid Use Hg jet tilted with respect to solenoid axis Use Hg pool as beam dump

BROOKHAVEN NATIONAL LABORATORY Engineered solution--P. Spampinato, ORNL

E951 Hg Jet Tests

- 1cm diameter Hg Jet
- V = 2.5 m/s
- 24 GeV 4 TP Proton Beam
- <u>No</u> Magnetic Field

t = 0 ms

t = 0.75 ms

t = 7 ms

t = 2 ms

t = 18 ms

- Hg jet dispersal proportional to beam intensity
- Hg jet dispersal ~ 10 m/s for 4 TP 24 GeV beam
- Hg jet dispersal velocities $\sim \frac{1}{2}$ times that of "confined thimble" target
- Hg dispersal is largely transverse to the jet axis -longitudinal propagation of pressure waves is suppressed
- Visible manifestation of jet dispersal delayed 40 μ s

CERN/Grenoble Hg Jet Tests

- 4 mm diameter Hg Jet
- v = 12 m/s
- 0, 10, 20T Magnetic Field
- <u>No</u> Proton Beam

A. Fabich, J. Lettry Nufact'02

Slike's

•The Hg jet is stabilized by the 20 T magnetic field

•Minimal jet deflection for 100 mrad angle of entry

•Jet velocity reduced upon entry to the magnetic field

We wish to perform a proof-of-principle test which will include:

- A high-power intense proton beam (16 to 32 TP per pulse)
- A high ($\geq 15T$) solenoidal field
- A high (> 10m/s) velocity Hg jet
- A ~1cm diameter Hg jet

Experimental goals include:

- Studies of 1cm diameter jet entering a 15T solenoid magnet
- Studies of the Hg jet dispersal provoked by an intense pulse of a proton beam in a high solenoidal field
- Studies of the influence of entry angle on jet performance
- Confirm Neutrino factory/Muon Collider Targetry concept

High Field Pulsed Solenoid

- 69° K Operation
- 15 T with 4.5 MVA Pulsed Power
- 15 cm warm bore
- 1 m long beam pipe

Peter Titus, MIT

Fabrication Contract has been Awarded

CVIP has been awarded the contract for the pulsed solenoid.

They are responsible for the cryostat and integration of the coil package into the cryostat.

We are now receiving build-toprint drawings from CVIP for approval.

Scheduled delivery is Nov. 2004

Coil Fabrication

Everson-Tesla, Inc has been sub-contracted to fabricate the coils

Accelerator Complex Parameters:

Parameter	BNL AGS	CERN PS	RAL ISIS	LANCE WNR	JPARC RCS	JPARC MR
Proton Energy, GeV	24	24	0.8	0.8	3	50
p/bunch, 10 ¹²	6	4 (7 CNGS)	10	28	42	42
Bunch/cycle	12	8	2	1	2	9
p/cycle, 10 ¹²	72	28 (56 CNGS)	20	28	83	300
Cycle length, µs	2.2	2.0	0.3	0.25	0.6	4.2
Availability (?)	07	06	06	Now	08	09

CERN-INTC-2003-033 INTC-I-049 26 April 2004

A Proposal to the ISOLDE and Neutron Time-of-Flight Experiments Committee

Studies of a Target System for a 4-MW, 24-GeV Proton Beam

J. Roger J. Bennett¹, Luca Bruno², Chris J. Densham¹, Paul V. Drumm¹, T. Robert Edgecock¹, Tony A. Gabriel³, John R. Haines³, Helmut Haseroth², Yoshinari Hayato⁴, Steven J. Kahn⁵, Jacques Lettry², Changguo Lu⁶, Hans Ludewig⁵, Harold G. Kirk⁵, Kirk T. McDonald⁶, Robert B. Palmer⁵, Yarema Prykarpatskyy⁵, Nicholas Simos⁵, Roman V. Samulyak⁵, Peter H. Thieberger⁵, Koji Yoshimura⁴

> Spokespersons: H.G. Kirk, K.T. McDonald Local Contact: H. Haseroth

Participating Institutions

- 1) RAL
- 2) CERN
- 3) KEK
- 4) BNL
- 5) ORNL
- 6) Princeton University

Proposal submitted April 26, 2004

The TT2a Beam Line

The TT2 Tunnel Complex

Cryogenic Flow Scheme

Surface above the ISR

CERN proposed power supply solution type ALICE/LHCb, rated 950V, 6500A

2 x Power transformers in parallel, housed in the same cubicle

Total DC output ratings: 6500Adc, 950Vdc, 6.7 MW

AC input ratings (per rectifier bridge): 2858Arms, 900Vac (at no load), 4.5 MVA

Each power transformer ratings

Primary side: 154Arms, 18kVac Secondary side: 3080Arms, 900Vac Nominal power: 4.8 MVA

Other

- Air forced cooling; - Fed by two18 kV lines

High precision current control electronics

ROOKHA

NATIONAL LABORATORY

2 x rectifier bridges in parallel

Layout of the Experiment

Run plan for PS beam spills

Our Beam Profile request allows for:	Charge	Bucket Structure	Во	Beam Shift	Number of Shots
	4 x 5TP	1-2-3-4	0	0	2
• Varying beam charge intensity from 5 (7) TP	4 x 5TP	1-2-3-4	5	0	2
to 20 (28) TP	4 x 5TP	1-2-3-4	10	0	2
• Studying influence of solenoid field strength	4 x 5TP	1-2-3-4	15	0	2
• Studying influence of solehold field strength	4 x 5TP	1-2-3-4	15	+5mm	2
on beam dispersal (B_0 from 0 to 151)	4 x 5TP	1-2-3-4	15	+2.5mm	2
•Vary beam/jet overlap	4 x 5TP	1-2-3-4	15	-2.5mm	2
 Study possible cavitation effects by varying 	4 x 5TP	1-2-3-4	15	-5mm	2
PS spill structure—Pump/Probe	1 x 5TP	1	15	0	2
	2 x 5TP	1-2	15	0	2
	3 x 5TP	1-2-3	15	0	2
	4 x 5TP	1-2-3-5	0	0	2
	4 x 5TP	1-2-3-5	15	0	2
	4 x 5TP	1-2-3-6	0	0	2
	4 x 5TP	1-2-3-6	15	0	2
	4 x 5TP	1-2-3-7	0	0	2
	4 x 5TP	1-2-3-7	15	0	2
	4 x 5TP	1-2-3-8	0	0	2

4 x 5TP

1-2-3-8

15

0

2

NATIONAL LABORATORY

CERN ISOLDE Hg Target Tests

PS Extracted Beam Profile

Optical Diagnostics of Hg Dispersal Muon Collaboration

Experiment Schedule

Key to plan is the scheduled shutdown of PS/SPS operations for 2005. We have an excellent opportunity to install the experiment and commission the experiment before the April 2006 resumption of PS operations.

- •Installation 4th Q 2005
- •Commissioning 1st Q 2006
- •Beam on target April 2006
- •Equipment removal end of April, 2006
- •nTOF resumes May 2006.

Pulsed Solenoid Project Cost Profile

Magnet

Engineering\$ 350 K\$ 350 KFabrication\$ 410 K\$ 410 KTesting\$ 90 KShipping\$ 15 KInstallation\$ 20 KDecommission\$ 25 K

Power Supply (CERN Solution)

Engineering	\$ 70 K	\$ 20 K
Procurement	\$ 300 K	
Installation	\$ 80 K	
Decommission	\$ 20 K	
Contingency	\$ 70 K	

Beam Diagnostics

Beam Profile	\$40 K
Beam Dump	\$ 25 K
Scintillators	\$ 10 K

Cryogenics System (Assume CERN supplied components) Engineering \$ 90 K \$ 45 K Procurements \$ 50 K Control System \$ 40 K Installation \$110 K Decommission \$ 10 K Contingency \$ 40 K

Hg Jet System Engineering \$ 30 K Procurements \$ 45 K Optical System \$ 35 K Decommission \$20 K Contingency \$ 20 K

Support Services Data Acquisition \$ 30 K Project Management \$150 K

Cost Summary

	System	Spent
	Costs	to date
Magnet System	\$ 910 K	\$ 760 K
Power Supply	\$ 540 K	\$ 700 K \$ 20 K
Cryogenics	\$ 340 K	\$ 45 K
Hg Jet System	\$150 K	
Beam Systems	\$75 K	
Support Services	\$ 190 K	

Total \$2205 K \$825 K Remaining Costs \$1380K

