

ENERGY FLOW AND DEPOSITION IN A 4-MW MUON-COLLIDER TARGET SYSTEM (IPAC12, WEPPD036)

N. Souchlas³, X. Ding⁵, V.B. Graves², H.G Kirk¹, K.T. McDonald⁴, H.K. Sayed¹, R.J. Weggel³ ¹BNL, Upton, NY 11973, USA, ²ORNL, Oak Ridge, TN 38731, USA, ³Particle Beam Lasers, Inc., Northridge, CA 91324 USA,

⁴Princeton University, Princeton, NJ 08544, USA, ⁵UCLA, Los Angeles, CA 90095, USA

A series of studies was performed using the MARS15+MCNP code to optimize the He-gas-cooled tungsten shielding of superconducting magnets for the target station at a Muon Collider or Neutrino Factory. The goal is to provide a 10-year lifetime of these magnets against radiation damage due to secondary particles from the target. For this, the peak density of deposited power can be no more than 0.1 mW/g,

 \Rightarrow Central superconducting coil must have inner radius of 1.2 m, and stored energy ~ 3 GJ.

50 100 150 200 250 300 350 phi(deg)