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The Context

e Physics: Nature presents us with the opportunity to explore the richness of the
mixing of massive neutrinos: Mass hierarchy, sin’ 6,5, CP violation.
e Neutrino Beams:

+

— Superbeam neutrinos from n* — p*v,(v,). (Pions from pA — 7=X.)

+ +

— Factory neutrinos from p~ — e*v,v.(v,v.). (Muons from n* — p*v,(v,).)

— B-beam neutrinos from ‘He — SLie 7., ®*Ne — ®Fe'v, (not discussed here).
e Detectors: Cheapest large detectors are calorimeters with no magnetic field.
= Cheapest to study v, — v, oscillations with a sign-selected source.
= Long time to study both neutrino and antineutrino oscillations.

Alternatives to permit simultaneous studies of neutrinos and antineutrinos:

— Magnetized iron calorimeter with Neutrino Factory (u* only).

— Magnetized liquid argon detector with Superbeam and/or Neutrino Factory.

(Only magnetized LAr detector can distinguish e*.)

(Neutrino Factory needs magnetized detector even if sign-selected beam.)
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4-MW Proton Beam

e 10-30 GeV appropriate for both Superbeam and Neutrino Factory.
= 0.8-2.5 x10Y pps; 0.8-2.5 x10?* protons per year of 107 s.

e Rep rate 15-50 Hz at Neutrino Factory, as low as 2 Hz for Superbeam.
= Protons per pulse from 1.6 x10' to 1.25 x10%".
= Energy per pulse from 80 kJ to 2 MJ.

e Small beam size preferred:

~ 0.1 cm? for Neutrino Factory, ~ 0.2 cm? for Superbeam.

= Severe materials issues for target AND beam dump.

e Radiation Damage.
e Melting.

e Cracking (due to single-pulse “thermal shock”.

Kirk T. McDONALD ISS MACHINE WORKING GROUP MEETING, UC IRVINE, AuGusT 21, 2006 3



x\no
N

< Z
1@[ THE NEUTRINO FACTORY AND MUON COLLIDER, COLLABORATION

ot Radiation Damage
The lifetime dose against radiation damage (embrittlement, cracking, ....) by protons
for most solids is about 10%*/cm?.

= Target lifetime of about 5-14 days at a Neutrino Factory (and 9-28 days at a
Superbeam).

= Mitigate by frequent target changes, moving target, liquid target, ...
Remember the Beam Dump

Target of 2 interaction lengths = 1/7 of beam is passed on to the beam dump.

Long distance from target to dump at a Superbeam,
= Beam is much less focused at the dump than at the target,
= Radiation damage to the dump not a critical issue (Superbeam).

Short distance from target to dump at a Neutrino Factory,
= Beam still tightly focused at the dump,

= Frequent changes of the beam dump, or a moving dump, or a liquid dump.

A liquid beam dump is the most plausible option for a Neutrino Factory, independent
of the choice of target. (This is so even for a 1-MW Neutrino Factory.)

The proton beam should be tilted with respect to the axis of the capture system at a

Neutrino Factory, so that the beam dump does not absorb the captured 7’s and u’s.
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Target and Capture Topologies: Toroidal Horn

The traditional topology for efficient capture of secondary pions is a toroidal “horn”
(Van der Meer, 1961).

X
47‘/0,, con®

e Collects only one sign, = Long data runs, but nonmagnetic detector (Superbeam).

e Inner conductor of toroid very close to proton beam.
= Limited life due to radiation damage at 4 MW.

= Beam, and beam dump, along magnetic axis.

= More compatible with Superbeam than with Neutrino Factory.

Carbon composite target with He gas

cooling (BNL study): Mercury jet target (CERN SPL study):
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If desire secondary pions with F; < 5 GeV (Neutrino Factory), a high-Z target is

favored, but for F, 2 10 GeV (some Superbeams), low 7 is preferred.
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Target and Capture Topologies: Solenoid

Palmer (1994) proposed a solenoidal capture system for a Neutrino Factory.

e Collects both signs of 7’s and p’s, = Shorter data runs (with magnetic detector).

e Solenoid coils can be some distance from proton beam.

= 2 4 year life against

Vo The mercury collects in a pool that serves as the
radiation damage at 4 MW.

beam dump (Neutrino Factory Study 2):

= Proton beam readily tilted
with respect to magnetic axis. 100 SC Coils
= Beam dump out of the way = ———
of secondary 7’s and u’s. S -
Y H B 50 [ Fer Cu Coils E—
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Solenoid Capture System for a Superbeam

e Pions produced on axis inside the (uniform) solenoid have zero canonical angular

momentum, L. =r(P,+eA,/c) =0, = P; =0 on exiting the solenoid.

e If the pion has made exactly 1/2 turn on its helix when it reaches the end of the
solenoid, then its initial P, has been rotated into a pure F,, = P, = 0 on exiting

the solenoid.

= Point-to-parallel focusing for

P =P N\ P,=eBd/3nc P,=eBd/nc

P, =eBd/(2n + 1)rc. Vs N

{ B
= Narrowband (less background) ( h P =P, ) — | magmetc
neutrino beams of energies \ L=0 arget axis |
7~ P eBd ~ — —
T T 2n+1)2mce (KTM, physics/0312022)

= Can study several neutrino
oscillation peaks at once, Study both v and v at the same time.

1.27M223[6V2] L[km] B (2n + 1) = f/leteCtO.I' H(liuls.t i(.i(fl)ntify Sigr;?(():f' u and e.
E,[GeV] = 5 = Magnetized liquid argon TPC.

(astro-ph/0105442).
(Marciano, hep-ph/0108181)
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Thermal Issues for Liquid Targets (Neutrino Factory)

Liquid target/dump using mercury, or a Pb-Bi alloy.

~ 400 J/gm to vaporize Hg (from room temp),
= Need flow of > 10* g/s ~ 1 1/s in target/dump to avoid boiling in a 4-MW beam.

Neutrino Factory Study 2 design has 1.5 1/s flow of Hg, so no critical thermal issues.

Energy deposited in the mercury target (and dump) will cause dispersal, but at benign
velocities (10-50 m/s).

Mercury
Jet

1-cm-diameter Hg jet in 2e12 protons at ¢t =0, 0.75, 2, 7, 18 ms (BNL E-951, 2001)

A AT U
Model (Sievers): Udispersal = AZ — :/O;S(md = QC Vsound ~ 12.5 m/s for U ~ 25 J/g.

Data: vgispersal & 10 m/s for U ~ 25 J/g.
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o Thermal Issues for Solid Targets (Superbeams), I

The quest for efficient capture of secondary pions precludes traditional schemes to
cool a solid target by a liquid. (Absorption by plumbing; cavitation of liquid.)

A solid, radiation-cooled stationary target in a 4-MW beam will equilibrate at about

2500 C. = Carbon is only candidate for this type of target.
(Carbon target must be in He atmosphere to suppress sublimation.)

A moving band target (tantalum) could be considered (if capture system is toroidal).

Support Tube f‘OfOﬂnid_ ——

15 cm

toroid magnetically
levitated and driven
by linear motors

"solenoid
magnet
toroid at 2300 K radiates
heat to water-cooled
surroundings

¢

proton beam
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Thermal Issues for Solid Targets (Superbeams), I1

When beam pulse length ¢ is less than target radius r divided by speed of sound vyyyq,

beam-induced pressure waves (thermal shock) are a major issue.

Simple model: if U = beam energy deposition in, say, Joules/g, then the instantaneous
temperature rise AT is given by

AT = %, where C' = heat capacity in Joules/g/K.
The temperature rise leads to a strain Ar/r given by
g = aAT = %, where o = thermal expansion coefficient.
The strain leads to a stress P (= force/area) given by
P=FK ATT = EgU : where £ = modulus of elasticity.

In many metals, the tensile strength obeys P ~ 0.002F, a ~ 107°, and C ~ 0.3 J/g/K,

in which case
N PC N 0.002-0.3

UmaX ~ =
Fo 10—

~ 60 J/g.

= Best candidates for solid targets have high strength (Vasomax, Inconel, TiAl6V4)
and /or low thermal expansion (Superinvar, Toyata “gum metal”, carbon-carbon com-
posite).
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i How Much Beam Power Can a Solid Target Stand?

How many protons are required to deposit 60 J/g in a material?

What is the maximum beam power this material can withstand without cracking, for
a 10-GeV beam at 10 Hz with area 0.1 cm?.

Ans: If we ignore “showers” in the material, we still have dF/dz ionization loss,
of about 1.5 MeV /g/cm?.

Now, 1.5 MeV = 2.46 x 10713 J, so 60 J/ g requires a proton beam intensity of
60/(2.4 x 10713) = 2.4 x 101 /cm?.

So, Ppax ~ 10 Hz- 10" eV 1.6 x 1071 J /eV 2.4 x 101 /em?-0.1 cm? ~ 4 x 10° J /s = 0.4 MW.

If solid targets crack under singles pulses of 60 J/g, then safe up to only 0.4 MW

beam power!

Empirical evidence is that some materials
survive 500-1000 J /g,
= May survive 4 MW if rep rate 2 10 Hz.

Ni target in FNAL pbar source:
“damaged but not failed” for peak energy
deposition of 1500 J/g.

=
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Magnetic Issues for Moving Targets

Conducting materials that move through nonuniform magnetic field experience eddy-

current effects, = Forces on entering or leaving a solenoid (but not at its center).

= Free jet of radius r cannot pass through a horizontal solenoid of diameter D unless

3ror?B? 2
U>M%6[ 4 ] m/s, for Hg or Pb-Bi jet, D =20 cm, 5, =20 T.
32pD 1 cm
50-Hz rep rate requires v = 20 m/s for new target each pulse, so no problem for

baseline design with » = 0.5 cm. The associated eddy-current heating is negligible.
[Small droplets pass even more easily, and can fall vertically with no retardation.]

A liquid jet experiences a quadrupole shape
distortion if tilted with respect to the solenoid
axis. This is mitigated by the upstream iron plug
that makes the field more uniform.

Dfsfa
I1ce 1.
from . Jet traverses B,

This qualitative
behaviour can be
observed in all
events.

Magnetic damping of surface-tension waves
(Rayleigh instability) observed in CERN-Grenoble
tests (2002).

B-field

The beam-induced dispersal will be partially
damped also (Samulyak).

nozzle
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DRAFT Recommendations

This presentation ends with a preliminary set of recommendations on a baseline,
alternatives, and relevant R&D for target, dump, capture and decay at a 4-MW
Neutrino Factory and a 4-MW Neutrino Superbeam.

These draft recommendation were written by KTM, discussed at the RAL meeting,
and given tacit group approval (without detailed debate).
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Neutrino Factory: Baseline

The baseline is essentially that of the Neutrino Factory Study 2,
http://www.cap.bnl.gov/mumu/studyii/

MERCURY JET@ 100 MRAD
SC 1 REPLACEABLE HOZZLE —— e LRCH IR
MAIN CRYOSTAT SUPERCONDUCTING INSERT QU e
/ OUTER BOUNDARY COILS ' / [ wacuET 3
GATE %Edgém SUPPLY — ‘.. :gggg gORE
VALVE ~—HOLLOW CORE
PROTON BEARH ——
< jr /
L ; (
i i ’
£ e e 4
I .‘I.‘".
L MAGHET SUPPORT —
AND SHIELD CASIHG
; CRYOSTAT BEAM
/ - SUPPORT STRUCTURE
(WOH20 FILLED) ,
SECTION AA TARGET INTERACTION —
70 OWER SEGMENT REGIUN
3 EXTRA WC SHIELDING 7=610CM
WC SHIELDING BEAM ABSORBER

DRAINLINE

e Solenoidal capture magnet (=~ 20 T) with adiabatic transition to solenoidal decay
channel (~ 1 T).

e Continuous, free mercury jet target (r = 0.5 cm, v = 20 m/s) tilted at 100 mrad

to magnetic axis.

e Beam dump = pool of mercury fed by the target jet.
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Neutrino Factory: Alternatives

X
%on con®

A Pb-Bi liquid metal could be preferable to Hg in being a solid at room temperature.
No alternatives have been proposed to the liquid pool beam dump.

No alternatives have been proposed to the solenoidal decay channel.

Conceivable to use mercury pool + solid target, but not recommended.

Toroidal capture system not recommended as provides only one sign of muons, has
awkward matching into a solenoidal decay channel, and is not well matched to use of

a mercury pool dump.
Neutrino Factory: R&D

e Complete the proof-of-principle demonstration of mercury jet 4+ proton beam -+
15-T solenoid (CERN MERIT experiment in the TT2A line).

e Continue simulations of thermal magnetohydrodynamical properties of the base-

line system.

e Extend studies of systems issues of a 4-MW target facility (including use of liquid
Pb-Bi rather than Hg).
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Neutrino Superbeam: Baseline

e Capture in a toroidal horn, followed by decay in zero magnetic field.
e Conventional water-cooled copper dump at end of decay channel.
e Carbon-carbon composite target in a He atmosphere, primarily radiation cooled.

e This option compatible with use of a nonmagnetic detector such as water Cerenkov.
Neutrino Superbeam: Alternative

[This recommendation is particularly personal, and reflects KTM’s belief that a
4-MW Neutrino Superbeam is some ways off, and should provide better capability
than simply scaling up present plans for 0.4-MW beams.]

e Capture and decay in a uniform solenoid magnet tuned to provide a ‘“comb” of
narrowband neutrino beams (v, and 7, simultaneously) at successive oscillation

maxima.
e Conventional water-cooled copper dump at end of decay channel.
e Carbon-carbon composite target in a He atmosphere, primarily radiation cooled.

e This option linked to use of a detector that can distinguish e*, i.e., a magnetized

liquid argon detector.
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Neutrino Superbeam: Target Alternatives

A low-Z target is preferred for a Neutrino Superbeam. High-Z alternatives include:

e Free liquid metal jet target.
e Rotating band target, if toroidal capture system.

e Fluidized pebble-bed target.

Neutrino Superbeam: R&D

e GEANT simulation of solenoidal capture option.
e Hardware development of a 50-Hz toroidal horn for a high-radiation environment.
e Continued irradiation studies of candidate target materials.

e Technical evaluation of scheme for weekly replacement of carbon target.
(A positive evaluation could lead to a hardware R&D program.)

e Technical evaluation of the rotating band scheme.

e Technical evaluation of the fluidized pebble-bed scheme.

Kirk T. McDONALD ISS MACHINE WORKING GROUP MEETING, UC IRVINE, AuGusT 21, 2006 17



Vi

TQ[( THE NEUTRINO FACTORY AND MUON COLLIDER COLLABORATION

. Addendum: Ongoing Targetry R&D Activities
Neutrino-Factory Related:

e CERN MERIT experiment.
e Target materials studies at the BNL BLP.
e Solid target studies at RAL.

e Proposed target test facility at Eurisol/ISOLDE.
A Sampling of Other Targetry R&D Efforts:

e Existing/funded neutrino beams: CERN, FNAL, J-PARC.
e Existing neutron spallation facilities: ISIS, NSNS, PSI.
e Proposed radioactive beams: RIA, $-beams.

e Proposed facilities for tritium production, radioactive waste transmutation.
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enca® Addendum: NuMI Target R&D

NuMI target failed due to leak in ‘

cooling channels (April 2005).
Target repaired during 1-month
downtime.

Graphite Fin Core, 2 int. len.
(6.4 mmx 15 mmx 20 mm) x 47

Target has now operated up to Water cooling tube also provides mech. support
Y

300 kW.

0.4 mm thick Aluminum vacuum/Helium tube

Ceramic electrical isolation —

. Encapsulation of graphite cylinders (segments) with a prestress of
R&D in progress towards a 2-MW  apout 10 MPa into stainless steel or aluminum thin-walled pipe:

Annular

t arget . Primary . channel
o . o tol ‘ for water
Substantial risk of failure of water bem ..... cooling

A

JaCket due tO beam-lnduced cav- Provides an integrity of the target core and keeps it even in the case of thermo-mechanical
. . . : or radiation damages of some segments
itation pitting of the Al (or SS) |

Prevents a direct contact of the cooling water with the heated surface of graphite
Wall. ¥ Provides a good thermal contact between graphite and metal pipe

Mitigated slightly by the 10-us
pulse length of the NuMI proton

Prototype of the baffle collimator (2002):

beam~ @58 mm graphite cylinders are encapsulated into
1.5 mm thick afuminum pipe
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