Target & Capture for PRISM

Koji Yoshimura On behalf of PRISM Target Group

Institute of Particle and Nuclear Science High Energy Accelerator Research Organization (KEK)

Contents

- Targetry for PRISM
- Solenoid capture
- Conducting Target
- Summary

Requirements of Targetry for PRISM

- Pion Momentum
 - ~100 MeV/c
 - backwards capture scheme available!
- Emittance
 - As low as FFAG acceptance
 - horizontal 10000π , vertical 3000π
- Method
 - Solenoid Capture
 - Conducting Target

- Target material
 - W is better than C
- B field
 - Determined by Capture field
 - Yield∞Bfield
- Target radius
 - Thin target is better

SC Solenoid in High Rad. Env

Thick radiation shield is necessary

- ~500 W
- Radiation shield of 25 cm in thickness is needed
- Large bore for absorber
 - High stored energy
 - Expensive magnet
- To optimize design
 - We totally rely on simulation.
 - Simulation code should be experimentally evaluated!

25 cm, 500W

Thickness of Absorber

Direct Measurement of Radiation heat by Beam

Prototype magnet

Beam test at KEK Nov, 2002

- Prototype magnet of 10.9 Tesla
 - Hybrid coil (NbTi, Nb₃Sn, HiTc)
 - Indirect cooling with GM cryocooler
 - 10.9 T in 6 cm warm bore
- Beam test with Coil-Mockup
 - Direct measurement of heat load by radiation
 - Study behavior of magnet under heating condition
 - KEK 12 GeV proton
 - 10¹¹ protons/s
 - Cryo-calorimeter

Comparison

В	12 T	6 T
Useful aperture R	0.05	0.10
Cryost. IR	0.55	0.4
Coil IR	0.65	0.45
Coil OR	1.1	0.55
Coil length	~1.6	~1.6
S/C	Nb3Sn/NbTi	NibTi
Stored energy	~190 MJ	~16 MJ
Coil mass	~20 Ton	2 Ton
Cost (Estimate)*	~17 M\$	~3 M\$

*PDG: COST(in M\$)=0.523[E/1 MJ)]^{0.662}

REALISM

- Baseline option
 - B=6T
 - IR=450 cm, L=160 cm
 - Graphite Target L=2λ=80 cm
 - Shield thickness 25cm
 - Still Necessary for R&D
 - Cooling ~500 W
 - Quench protection
 - Radiation safety
 - Thin Graphite target

Further R&D Plan of PRISM Solenoid option

- R&D Coil will be constructed this year
 - Half or Quarter size
 - Heating using AC LOSS
 - Or Special heater
 - Cooling Method ~500W
 - Pool boiling
 - Thermo siphon (Using convection)
- Proto-type of graphite target
 - JHF neutrino group (Hayato, Oyabu et.al)
 - Water cooled graphite (40 kW heat)
 - Thinner Target?
- Engineering Design -> Future Upgade

Conducting Target

- Confine pions inside the target with troidal field
 - B. Autin, @Nufact01
- Advantage over Solenoid
 - Low emittance beam
 - Linear transport element
 - No SC solenoid channel
 - Cheaper!
 - Cooling condition better?

Comparison of target material

	Mercury	Beryllium	Lithium
Power [MW]	3.18	9.95	33.6
Temerature rise per pulse[K]	160	83	142
Field [T]	22.04	21.12	20.84
Intensity [MA]	2.49	2.49	2.49
Frequency [Hz]	50	50	50
Phase[π]	1.	3.	10.
Puls length [ms]	0.264	4.68	3.3
Targe length [m]	0.13	0.407	1.37
T arg radius [m]	0.0226	0.0236	0.024

B. Autin et al.

Mercury is good candidate

- Minimum Power
- Easy to cooling
- Higher pion yield
- **Technical Issues**
 - How to cut off electrical circuit?
 - Stress due to pinch effect
 - Container
 - Shockwave
 - Cavitation
 - Thicker wall can be used!
 - No reabsorption
 - Window

Setup for current test

- 1st phase
 - 1000 A DC
 - 100 J
- 2nd phase
 - 250 KA 2.5ms Pulse (K2K horn PS)
 - 15 KW
- 3rd phase
 - 1 MW?
 - Beam test?

Mercury Test Loop

- Mercury 18 litter ~ 250 kg
- Study mercury flow

Summary

- Solenoidal Capture
 - Standard scheme
 - Beam test was successfully performed using the mockup
 - Design parameters will be considered.
 - Realistic R&D Model coil
- Conducting Target
 - merits
 - R&D Work has just started!
 - Proof of principle
 - Feasibility test of High current liquid target

Basic Priciple

