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Low-Melting-Temperature Metals

for Possible Use as

Primary Targets at a Muon Collider Source

1 Introduction

The muons of a Muon Collider will arise from the decay of pions produced in the interaction
of some 1015 protons/sec on a primary target. The associated heating of the target makes
the use of a solid target problematic. Therefore liquid targets are under consideration. See
sec. 4.1 of the 1996 Muon Collider Feasibility Study [1] for a general discussion of targeting
issues.

While mercury or perhaps gallium suggest themselves as room-temperature liquids mer-
cury vapor is toxic and gallium has a relatively low atomic number and correspondingly
lower yield of soft pions. Furthermore, in case of an accident at the target station it would
be advantageous for the target material to solidify at room temperature to aid in contain-
ment. Hence, the room-temperature liquid, eutectic Ga-In, may be convenient for initial
studies. Small amounts of added tin and zinc reduce the melting temperature, and the cost,
slightly. Reducing the amount of gallium will raise the melting temperature to above room
temperature if desired, as well as increasing the average atomic number.

Some information on liquid gallium alloys can be found at
http://www.indium.com/liquidalloys.html

Therefore we consider here the possible use of low-melting-temperature metals, chiefly
lead-bismuth alloys (variants on solders). Lead, when combined with bismuth in an alloy
that is 45% Pb by weight, has a melting point of only 126◦C (255◦F). The Bi-Pb phase
diagram is shown in Fig. 1, taken from [2].

Other interesting low-melting allows of lead and/or bismuth are made by adding cad-
mium, indium or tin.

Some relevant binary phase diagrams are shown in Figs. 2-10 and ternary phase diagrams
are shown in Figs. 11-13.

Some quaternary and quinternary alloys have extremely low melting temperature, such
as alloys 117 and 136 (designated by their melting temperatures in ◦F). See Table 2 for a
summary of physical properties of several commercial alloys.
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Table 1: Properties of some elements.

Element Atomic Density Melting Boiling Heat Heat of Thermal

Number Temp. Temp. Capacity Vapor. Cond.

(gm/cm3) (◦C) (◦C) (J/gm-◦C) (J/gm) (W/cm)

Bismuth 83 9.7 271 1610 0.12 501 0.079

Cadmium 48 8.6 321 767 0.23 886 0.97

Gallium 31 5.9 30 2403 0.37 3712 0.48

Indium 49 7.3 156 2073 0.23 2016 0.82

Lead 82 11.35 327 1750 0.13 858 0.35

Mercury 80 13.5 −39 357 0.14 295 0.083

Tin 50 6-7 232 2603 0.23 2487 0.67

Figure 1: Bi-Pb phase diagram. Minimum melting temperature = 125.5◦C.
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Table 2: Alloy Specifications from Belmont Metals. See also
http://www.indium.com/fusiblealloys.html
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Figure 2: Bi-Cd phase diagram. Minimum melting temperature = 146◦C.
Cadmium vapors are somewhat toxic.

Figure 3: Bi-In phase diagram. Minimum melting temperature = 72.7◦C.
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Figure 4: Bi-Sn phase diagram. Minimum melting temperature = 139◦C.

Figure 5: Cd-In phase diagram. Minimum melting temperature = 127.7◦C.
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Figure 6: Cd-Pb phase diagram. Minimum melting temperature = 248◦C.

Figure 7: Cd-Sn phase diagram. Minimum melting temperature = 176◦C.
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Figure 8: Ga-In phase diagram. Minimum melting temperature = 14.2◦C.

Figure 9: Ga-Sn phase diagram. Minimum melting temperature = 20.5◦C.
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Figure 10: Ga-Zn phase diagram. Minimum melting temperature = 24.7◦C.

Figure 11: In-Pb phase diagram. Minimum melting temperature = 157◦C.
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Figure 12: In-Sn phase diagram. Minimum melting temperature = 120◦C.

Figure 13: Pb-Sn phase diagram. Minimum melting temperature = 183◦C.
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Figure 14: Bi-In-Pb phase diagram. Minimum melting temperature = 73◦C.

Figure 15: Bi-Pb-Sn phase diagram. Minimum melting temperature = 95◦C.
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Figure 16: Ga-In–Sn phase diagram. Minimum melting temperature =
10.7◦C.

Figure 17: In-Pb-Sn phase diagram. Minimum melting temperature = 120◦C.
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2 Jet Velocity

2.1 Effect of 15-Hz Repetition Rate

We consider the use of a pulsed jet, leading to a series of cylinders of liquid, each of length
l, radius r, that move with velocity v. The frequency of the pulse is f , nominally 15 Hz.

If the material from one pulse is not to overlap that of the next, then the jet velocity
must obey,

v > fl. (1)

For example, the length of each pulse should be about two nuclear interaction lengths,
or about 30 cm for a dense, high-Z material. Then, with f = 15 Hz, we need v > 4.5 m/s.

The jet velocity will have to be several times this to create gaps between adjacent pulses
so that the proton beam interacts only with a single jet pulse.

2.2 Effect of Gravity

The trajectory of the jet will be a parabolic arc due to the acceleration of gravity. If the jet
velocity is too low, the curvature of the jet will be large, and the proton beam would not be
able to intersect the jet pulse over its whole length.

The ends of the jet are displaced downward from the ideal straight trajectory by amount,

Δy =
gt2

2
=

gl2

8v2
, (2)

noting that the time for the center of the jet to reach its end is t = l/2v. Hence, to have
offset Δy between center and ends to the jet, we need,

v =

√
gl2

8Δy
. (3)

For example, with l = 30 cm, and Δy = 1/8 cm as might be desired for a jet of radius 1 cm,
we find v ≈ 1000 cm/s = 10 m/s.

Thus the effects of pulse frequency and of gravitational curvature both require the jet
velocity to be at least 10 m/s.

3 Will a Strong Magnetic Field Repel a Metal Jet?

If a jet of liquid metal enters the solenoid magnet surrounding the target area it will be
repelled according to Lenz’ law. The effect is due to the Lorentz force on the eddy currents
induced in the moving metal. In an extreme case the jet would not reach the center of the
solenoid.

A good general introduction to eddy-current analysis is given §45 of Electrodynamics of
Continuous Media by Landau and Lifshitz [3]. §§51-55 of that book discuss the dynamics
of magnetic fluids, of which the present topic is an example. Chap. 10 of Classical Electro-
dynamics by Jackson [4] also covers magnetohydrodynamics. I have found the short book
Magnetohydrodynamics by Cowling [5] to be helpful also.
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It is useful to establish numerical values for some relevant parameters of our system as a
qualitative guide to its magnetohydrodynamic behavior.

First, we note that the problem of a moving conductor in a static magnetic field is
equivalent to a moving field that encounters a conductor initially at rest. Thus, the electric
field E′ in the frame of the conductor is related to the electric and magnetic fields E and B
in the lab frame by,

E′ = E + v × B, (4)

where v is the laboratory velocity of the conductor (v � c), and we use MKSA units.
Next, we recall that the penetration of a time-dependent magnetic field into a conductor

is governed by a diffusion equation. Assuming v � c and reasonably high conductivity σ,
we may neglect the displacement current, and the basic electromagnetic equations are,

∇ ×E = −∂B

∂t
, ∇ × B = μ0J, and J = σE′ = σ(E + v × B), (5)

where J is the current density. On eliminating J and E we find that

∂B

∂t
=

∇2B

μ0σ
+ ∇ × (v × B). (6)

With the neglect of the second term (justified for low velocity), we find the desired diffu-
sion equation. Thus, the characteristic time for diffusion of the magnetic field into a long
conducting cylinder of radius r is,

τ = μ0σr2. (7)

The low-melting temperature alloys in Table 2 all have relatively low conductivity. In
particular, alloy 255 has conductivity only 2% that of copper (resistivity = 1.67 μΩ-cm),
i.e., about 106 MKSA units. Hence, for a cylinder of radius 1 cm the diffusion time is,

τ ≈ 4π × 10−7 · 106(10−2)2 ≈ 10−4 sec. (8)

Another characteristic time in our problem is that over which the external magnetic field
varies appreciably. For a jet of velocity v that enters a solenoid of diameter D, this time is
D/v. The ratio of the diffusion time to time D/v is called the magnetic Reynold’s number:

R =
τv

D
. (9)

For R � 1 the external magnetic field penetrates the conductor, but for R � 1 it does not.
Anticipating a jet velocity of order 10 m/s and a solenoid of diameter D ≈ 0.3 m, we

have D/v ≈ 0.03 s, and the magnetic Reynold’s number is R ≈ 0.003. We conclude that in
our problem the diffusion is rapid enough that the external field penetrates the conductor.
That is, in an important sense our candidate metals are not “good” conductors which could
exclude the magnetic field from their interior. This is fortunate, as a “good” conductor could
not enter a 20-T magnetic field unless its initial velocity were very high.1

1To see this, consider a good conductor moving along the z-axis of a solenoid field. Surface current
I = Bz/μ0 (per unit length) is induced so as to cancel the external solenoid field Bz . This current interacts
with the radial component of the external field, Br ≈ (r/2)dBz(0, z)/dz = rB′

z/2 to produce retarding force
F = −2πrIBr = −2πr(Bz/μ0)(rB′

z/2) = πr2(B2
z )′/2μ0 per unit length. But also, F = ma = πr2ρv̇ =

πr2ρvv′ = πr2ρ(v2)′/2, where ρ ≈ 104 kg/m3 is the mass density. This integrates to give v2(z) = v2
−∞ −

B2
z/μ0ρ. Thus, to enter a field of Bz = 20T, the initial velocity would need to be at least Bz/

√
μ0ρ ≈ 200

m/s for our heavy metals.
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The magnetic Reynold’s number can be thought of in another way. From the point of
view of the conductor, the external magnetic field is time dependent with frequency content
up to ω ≈ v/D. The skin depth at this frequency is δ =

√
2/μ0ωσ =

√
2D/μ0σv. This is

to be compared to the radius r of the conductor. Indeed,

r2

δ2 =
μ0σr2v

2D
=

R
2

. (10)

In our case, the low value of the magnetic Reynold’s number indicates that the conductor
is much smaller than the relevant skin depth, and again we expect the external field to
penetrate the conductor.

We now give some approximate analyses of the forces on the liquid jet as it enters a
solenoid.

3.1 Jet on Axis of a Solenoid

We model the forces on a conducting jet in a magnetic by considering only a ring (or disc)
perpendicular to the axis of the jet. The ring has radius r, radial extent Δr and thickness
Δz.

We first consider only motion along the axis of the ring, which we call the z axis, and
which is also the axis of a solenoid magnet with field B(r, z).

Then the magnetic flux through the ring at position z is,

Φ ≈ πr2Bz(0, z), (11)

whose time rate of change is,
Φ̇ = πr2Ḃz = πr2B ′

zv, (12)

where ˙ indicated differentiation with respect to time, ′ is differentiation with respect to z,
Bz stands for Bz(0, z) and v is the velocity of the center of mass of the ring.

If the metal has electrical conductivity σ, then its resistance to currents around the ring
is,

R =
2πr

σΔrΔz
, (13)

so the (absolute value of the) induced current is,

I =
E
R

=
Φ̇

R
=

σrB ′
zvΔrΔz

2
. (14)

3.1.1 Radial Pinch

The Lorentz force on the ring due to the interaction of this current with the axial field
pinches the jet radially, while that due to the interaction with the radial field opposes the
motion. The radial pinch can be characterized by a radial pressure gradient,

ΔPr

Δr
=

ΔFr

ΔrΔzΔl
= − BzIΔl

ΔrΔzΔl
= −σrBzB

′
zv

2
. (15)
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As the jet enters the magnet from z = −∞, the axial field gradient, B ′
z, is initially posi-

tive, and the radial forces are inward. However, at the jet exits the solenoid, the gradient B ′
z

becomes negative, and the radial force is outwards. Even if the jet has not been destabilized
by the pinch on entering the magnetic, the radially outward forces experienced on leaving
the magnet may disperse the jet.

The pinch is greatest as the ring passes the edge of the solenoid, where Bz ≈ B0/2 and
B ′

z ≈ B0/D for a solenoid of diameter D and peak axial field B0. That is,

ΔPr,max

Δr
≈ −σ

4

r

D
B2

0v. (16)

Integrating this over radius, the pressure gradient between the axis and radius r is,

ΔPr,max ≈ −σ

8

r2

D
B2

0v. (17)

3.1.2 Axial Retarding Force

The component of the Lorentz force that opposes the motion of the ring is,

ΔFz = 2πrBrI = −πσr2BrB
′
zvΔrΔz ≈ −πσr3(B ′

z)
2vΔrΔz

2
, (18)

using the approximate relation for the radial field near the z-axis,

Br(r, z) ≈ −r

2

dBz(0, z)

dz
= −rB ′

z

2
, (19)

(which can be deduced from the Maxwell equation ∇ ·B = 0).
The equation of motion of a ring is then,

dFz = −πσr2(B ′
z)

2vzΔz

2
= mv̇z = 2πρrΔrΔzv′

zvz, (20)

where ρ is the mass density of the metal. After dividing out the common factor of πrΔrΔzvz

we find,

v′
z(r) = −σr2(B ′

z)
2

4ρ
. (21)

Before considering detailed models of the axial field profile, Bz, we note that the peak
gradient of the axial field of a solenoid of diameter D is B0/D, and the gradient is significant
over a region Δz ≈ D. Hence, we estimate that on entering a solenoid the jet velocity is
reduced by an increment,

Δvz(r) ≈ σr2B2
0

4ρD
. (22)

On leaving the solenoid, the jet velocity is reduced by a second increment Δvz. (Since
the effect depends on (B ′

z)
2, the sign is the same on both entering and exiting.)

The jet velocity cannot actually go negative due to the effect of the magnetic field. If
the velocity reaches zero the jet stops (falls). Note that we divided eq. (20) by vz before
integrating; once vz becomes zero F goes to zero and stays there.
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The reduction of velocity is zero on axis of the jet, and grows quadratically with radius.
If the jet were a rigid body, the Δvz would be one half the value given by eq. (22) at the
outer radius.

If the change in velocity is small compared to the initial velocity, v−∞, we estimate the
distance Δz(r) by which the material in the jet at radius r is retarded compared to the
material on axis as,

Δz(r) ≈ Δvz(r)Δt ≈ Δvz(r)
D

v−∞
≈ σr2B2

0

4ρv−∞
. (23)

We desire this to be small compared to the length of the jet. Indeed, it will be awkward if
Δz exceeds the radius of the jet.

We now consider more specific models.

3.1.3 Semi-Infinite Solenoid

Bob Weggel (private communication) has pointed out that the fields of a semi-infinite
solenoid are rather amenable to analytic calculation. Indeed, for a solenoid of radius D/2
with coils at z > 0, the axial field is,

Bz(0, z) =
B0

2

(
1 +

z√
(D/2)2 + z2

)
, (24)

whose derivative is,

B ′
z =

dBz(0, z)

dz
=

B0

2

(D/2)2

[(D/2)2 + z2]3/2
. (25)

Using eq. (25) in eq. (21) and integrating the equation of motion from −∞ to z, we find,

vz(r, z) = v−∞ − 3σr2B2
0

64ρD

(
π

2
+ tan−1 w +

w

1 + w2
+

2w

3(1 + w2)2

)
, (26)

where D is the diameter of the solenoid and w = 2z/D.
The semi-infinite solenoid is meant to represent a finite solenoid of length L = αD. Since

the semi-infinite coil begins at z = 0, the center of the finite solenoid it approximates is at
z = αD/2, i.e., at w = α. For α >∼ 1, as is reasonable for an actual magnet, there is little
difference between the result of eq. (26) at w = α and at +∞, so we estimate the change in
velocity as,

Δvz(r) ≈ −3πσr2B2
0

64ρD
. (27)

The retardation relative to the center of the jet is related by,

Δż(r) = Δvz(r) = Δz′vz ≈ Δz′v−∞, (28)

where the approximation holds if Δvz � v−∞. In this approximation, we integrate eq. (26)
to find,

Δz(r) ≈ −3σr2B2
0w

128ρv−∞

(
π

2
+ tan−1 w − 1

3w(1 + w2)

)
. (29)
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This diverges for large w, but at w = α ≈ 1, corresponding to the center of a real magnet,
we have,

Δz(r) ≈ −3πσr2B2
0α

128ρv−∞
. (30)

After a comparison with a calculation for a short solenoid, we consider numerical results
in sec. 3.1.5.

3.1.4 Short Solenoid

Figure 18 shows the axial field Bz(0, z) and its first derivative dBz(0, z)/dz for an idealized
thin solenoid of length L and diameter D.2 The derivative is approximately a Gaussian that
peaks at the edge of the solenoid and has variance D/4,

dBz(0, z)

dz
≈ −B0

D
e−8(z−L/2)2/D2

. (31)

Substituting eq. (31) for B ′
z, equation (21) can be integrated to find the velocity v0 of

the ring when it reaches the center of the magnet,

v0(r) = v−∞ −
√

πσr2B2
0

16ρD
, (32)

where v−∞ is the velocity of the ring at z = −∞ before it enters the magnetic field.
The ring cannot penetrate into a field of strength B unless,

v−∞ >

√
πσr2B2

0

16ρD
. (33)

Thus the metal ring, or jet, should have as small a radius as possible, as well as a low
electrical conductivity.

Recalling the result of sec. 3.1.3, the minimum initial velocity needed for the jet to
penetrate a semi-infinite solenoid is a factor of 3

√
π/4 = 1.33 times larger than the corre-

sponding velocity (33) for our model of a short solenoid. Therefore, we can use to results for
a semi-infinite solenoid as a conservative estimate of those for a short solenoid.

2For the record, the axial field is given in problem 5.2 of Jackson as Bz = B0(cos θ1 +
cos θ2)

√
1 + D2/L2/2, which translates to,

Bz(0, z) =
B0

2

(
1 + 2z/L√

1 + 4(z/L)(z/L + 1)/(1 + D2/L2)
+

1 − 2z/L√
1 + 4(z/L)(z/L − 1)/(1 + D2/L2)

)
,

and,

dBz

dz
=

B0

D

D3/L3

1 + D2/L2

(
1

[1 + 4(z/L)(z/L + 1)/(1 + D2/L2)]3/2
− 1

[1 + 4(z/L)(z/L − 1)/(1 + D2/L2)]3/2

)
.

The origin is at the center of the solenoid.
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2.01.51.00.50.0
z/L

1

0

-1

-2
Axial Field in Solenoids with D /L = 0.5 and 1.0

B z /B 0 for D /L = 0.5

B z /B 0 for D /L = 1.0

( D /B 0 )( dB z /dz) for D /L = 0.5

( D /B 0 )( dB z /dz) for D /L = 1.0

Figure 18: The axial field Bz(0, z) and its first derivative dBz(0, z)/dz in an
ideal thin solenoid of length L and diameter D for the two cases D/L = 0.5
and 1.0.

3.1.5 Numerical Examples

The low-melting temperature alloys in Table 2 all have relatively low conductivity. In par-
ticular, alloy 255 has conductivity only 2% that of copper (resistivity = 1.67 μΩ-cm), i.e.,
about 106 MKSA units. The density of alloy 255 is about 10 gm/cm3, i.e., 104 kg/m3. Then,
eq. (27) leads to the requirement,

v−∞ > 60 m/s
[ r

1 cm

] [ r

D

] [ B0

20 T

]2

. (34)

It is thought that the jet radius must be 0.5-1 cm to match the proton beam, and that the
inside diameter of the solenoid will be about 20 cm. In this case we need v−∞ > 0.75-3 m/s
for B0 = 20 T.

Again, if the jet is to exit the magnet, v−∞ must be twice the minimum given in (34).
In the approximation of eq. (30), the shear in the jet profile between its axis and radius

r is,
Δz(r)

r
≈ −3α

[ r

1 cm

] [ B0

20 T

]2 [
10 m/s

v−∞

]
. (35)

For, say, r = 1 cm, v−∞ = 10 m/s, α = 2 and B0 = 20 T, we would have Δz(r) ≈ 6r, which
is a fairly severe distortion of the jet.

Returning to the issue of the radial pinch, we can now cast eq. (17) in the form,

ΔPr,max ≈ 50 atm.
[ r

1 cm

] [ r

D

] [ B0

20 T

]2 [
v−∞

10 m/s

]
. (36)
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For, say, r = 1 cm, v−∞ = 10 m/s, D = 20 cm and B0 = 20 T, the maximum radial pressure
is 2.5 atmosphere. While not large, this may still be enough to perturb the shape of the jet
as it enters the magnet.

When the jet leaves the magnet, the radial pressure goes negative. This pressure is still
small compares to the tensile strength of the jet material, so the jet will not necessarily tear
apart. However, the rapid change of pressure from positive to negative may excite oscillations
of the jet which lead to breakup into macroscopic droplets. This would occur after the proton
beam interacted with the jet, so is more of a nuisance for the liquid collection system than
a fundamental flaw.

The longitudinal effects, (34) and (35), are suppressed at higher jet velocities, which,
however, enhances the radial pinch (36).

3.2 Jet at an Angle to the Axis of a Solenoid

To improve the yield of pions in the interaction of the proton beam with the liquid jet, it
is desirable that the jet axis make a small angle θ ≈ 0.1 to the axis of the solenoid. In this
case the motion of the jet includes a component at right angles to the magnetic field.

3.2.1 Magnetic Viscosity

We first make some general observations, following p. 10 of the book by Cowling [5]. We
suppose that the liquid is incompressible, so that the distribution of velocities with the jet
obeys ∇ · v = 0. The equation of motion for the fluid is,

ρ
dv

dt
= −∇P + ρg + η∇2v + J ×B, (37)

where ρ is the mass density, P is the pressure, g is the acceleration due to gravity and η is
the viscosity of the liquid. The current density J is related to the electric and magnetic fields
according to eq. (5), so the electromagnetic part of the, equation of motion can be written

ρ
dv

dt
= σ(E + v × B) × B = σ(E⊥ × B − B2v⊥), (38)

where E⊥ and v⊥ are the components of those vectors that are perpendicular to the magnetic
field B. IF the induced electric fields, E, are small compared to the magnetic fields (but see
below), the ⊥ component of eq. (38) has the form of the diffusion equation,

dv

dt

∣∣∣∣
⊥
≈ dv⊥

dt
≈ −σB2v⊥

ρ
. (39)

The minus sign indicate that v⊥ decays rather than grows. The characteristic decay time is,

τ⊥ =
ρ

σB2
≈ 104

106(20)2
= 2.5 × 10−5 s (40)

for alloy 255 in a 20-T magnetic field. This time is short compared to the time D/v ≈
0.3/10 = 0.03 s for the jet to enter the solenoid. This suggests that transverse electromagnetic
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forces will arise that are strong enough that the jet enters the solenoid along a magnetic field
line. If so, when the jet reaches the center of the solenoid it will be aligned along the axis of
the solenoid.

The resistance of the liquid to crossing field lines has been called “magnetic viscosity”
by Chandrasekhar.

The preceding conclusions are consistent with a qualitative interpretation of the radial
forces considered in sec. 3.1.1. That is, motion along the field lines of a solenoid requires
radially inward forces on entering the solenoid, but radially outwards forces on exiting.

In the preceding we ignored the effect of ordinary viscosity η, whose value we estimate
to be 0.001 MKS units, this being the viscosity of mercury. To assess the validity of this
assumption, we note that the volume force associated with “magnetic viscosity” is σB2v⊥,
while that associated with ordinary viscosity is ηv⊥/r2 (for a jet roughly aligned with the
solenoid axis). The square root of the ratio of these volume forces is called the “Hartmann
number” M :

M = rB

√
σ

η
≈ 0.01 · 20

√
106

10−3
≈ 6 × 103. (41)

Since M � 1, we infer that magnetic viscosity is indeed much more important than ordinary
viscosity in our case.

However, we have also neglected the transverse components of ∇P and E in the preced-
ing. Particularly in the case of the electric field, this may not be a good approximation. Let
us review the derivation of eq. (39) from a simple point of view. It indicates that a retarding
force should arise even for motion of a conductor are right angles to a uniform magnetic field.
First, the v × B force on the conduction electrons results in a current density J = σv × B,
if there is no opposing electric field. This current is also perpendicular to the magnetic field,
so the volume force density on this current is J × B, which leads to eq. (39).

But, does the current, J = σv × B, persist? This current leads to charge separation,
which leads to an electric field directed opposite to j, which tends to cancel the v×B force.
Thus, the current most likely exists only for a short time. Indeed, we expect that the charges
will rearrange themselves within the conductor on times of order σ/ε0 ≈ 10−18 s to cancel
out any “static” field inside the conductor, such as the field v×B. It seems that situations
in which “magnetic viscosity” is important are more subtle than simple uniform motion of
a conductor perpendicular to a magnetic field.

We are left with the qualitative prediction that the trajectory of the jet will tend follow
the magnetic field lines in a nonuniform field, but there is some doubt as to the quantitative
aspect of this statement.

3.2.2 Simple Model of Motion in Nonuniform Magnetic Field

(This section follows a note by Bob Weggel dated Dec. 11, 1997 [6]. The method introduced
in this section is applied in the following section to the problem of a conducting jet moving
though a solenoid.)

If the magnetic field is nonuniform, eddy currents arise that lead to forces which oppose
motion at right angles to the magnetic field lines.

For a simple calculation, we consider a magnetic field whose main component is in the
z direction, but whose strength is a function of x: Bz = Bz(x). A conductor moves with
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velocity vx in the x direction through this magnetic field; i.e., the motion is at right angles
to the field lines.

We suppose that a static field, Estatic arises that exactly cancels the v × B force (which
is in the y direction); i.e., Estatic + v × B = 0.

However, because the field is nonuniform, the flux varies through any loop inside the
moving conductor that lies in the x-y plane. Thus, an eddy current, J, flows in the x-y
plane. The J × B force on the eddy current has a component that opposes the velocity vx

that induces it. In particular, we need to calculate the y component of the eddy current.
To analyze the eddy currents we make an assumption that they flow in concentric loops

about the center of symmetry of the conductor in the x-y plane. For a simple model, we
take the conductor to be rectangular with extent Δx × Δy × Δz, and analyze the problem
at the moment that the center of the conductor is at the origin.

The eddy currents then flow in loops (tubes) of cross section εΔx×εΔy, where 0 ≤ ε ≤ 1.
The flux through the loop of parameter ε is,

Φ ≈ ε2Bz(0)ΔxΔy, (42)

supposing the field does not vary too much over distance Δx. The emf E induced around
this loop is therefore,

E = −Φ̇ = −vxΦ,x = −vxε
2Bz,xΔxΔy, (43)

noting that the motion of the conductor in x causes the change in the linked flux; the
subscript , x indicates differentiation with respect to x.

The emf induces a current I around the loop, which extends from ε to ε + Δε. The area
element perpendicular to the current is then ΔεΔyΔz/2 for that part of the loop parallel to
the x axis, and ΔεΔxΔz/2 for that part of the loop parallel to the y axis. The corresponding
electric fields are then,

Ex =
jx

σ
=

2I

σΔεΔyΔz
, and Ey =

2I

σΔεΔxΔz
. (44)

The emf equals the line integral of the electric field around the loop,

E = 2(ExεΔx + EyεΔy) =
4εI

σΔεΔz

(
Δx

Δy
+

Δy

Δx

)
, (45)

and hence,

I =
σΔεΔz

4ε
(

Δx
Δy

+ Δy
Δx

)E = −vxσεΔεBz,xΔxΔyΔz

4
(

Δx
Δy

+ Δy
Δx

) = −vxσεΔεBz,xV

4
(

Δx
Δy

+ Δy
Δx

) , (46)

where V is the total volume of the conductor.
The x component of the I × B force on the current loop is due to the y currents at

±εΔx/2:

dFx = −vxσεΔεBz,xV

4
(

Δx
Δy

+ Δy
Δx

) εΔy[Bz(εΔx/2) − Bz(−εΔx/2)] = −vxσε3Δε(Bz,x)2ΔxΔyV

4
(

Δx
Δy

+ Δy
Δx

) , (47)
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ignoring higher-order field derivatives. The total retarding force on the conductor is obtained
by integrating over ε from 0 to 1,

Fx = −vxσ(Bz,x)
2ΔxΔyV

16
(

Δx
Δy

+ Δy
Δx

) . (48)

The x component of the equation of motion is then,

Fx = mv̇x = ρV vxvx,x = −vxσ(Bz,x)
2ΔxΔyV

16
(

Δx
Δy

+ Δy
Δx

) , (49)

so that.

vx,x = − σ(Bz,x)2ΔxΔy

16ρ
(

Δx
Δy

+ Δy
Δx

) , (50)

The case of motion in the x-z plane, rather than simply along the x axis, is taken up in
the following section.

3.2.3 Motion at Angle θ to the Axis of a Solenoid

In this section we continue the argument of the preceding section. But here we consider a
conducting cylinder of radius a, moving with its axis at angle θ to the axis of a solenoid
magnet.

Induced Current in a Disc. The induced eddy currents will flow in loops that are roughly
perpendicular to the magnetic field lines. As a simplification, we suppose that the current
loops are circles perpendicular to the axis of the solenoid. This approximation should be
reasonable for small θ.

The (unperturbed) trajectory of the conductor is taken to be along the line,

x = zθ, (51)

where z increases with increasing time. To simplify the calculations, we suppose the trajec-
tory follows eq. (51) even though the velocity of the jet is perturbed by the magnetic field
(impulse approximation).

The radius of a current loop is εa, with 0 ≤ ε ≤ 1. The flux through a loop is

Φ ≈ πε2a2Bz(x = zθ, z). (52)

supposing the magnetic field does not vary too rapidly over the loop.
The axial component of a circularly symmetric magnetic field can be expanded as,

Bz(r, z) = Bz(0, z) − r2

4

d2Bz(0, z)

dz2
+ ... ≡ Bz − r2

4
B ′′

z + ... , (53)

where the symbol ′ indicates differentiation with respect to z. In eq. (52) it suffices to
approximate Bz(x, z) by the field on the axis, which we call Bz.
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The emf E induced around the loop due to its motion is then,

E = −Φ̇ = −(v · ∇)Φ ≈ −vzΦ
′ ≈ −πε2a2vzB

′
z. (54)

The resistance of a conducting loop that extends in radius from ε to ε + Δε and has
thickness Δz is,

R =
2πεa

σΔεaΔz
=

2πε

σΔεΔz
. (55)

Hence, the current I induced in this loop is,

I =
E
R

= −σa2vzB
′
zεΔεΔz

2
. (56)

Force on the Disc. We next calculate the force on the loop according to,

F =

∫
Idl× B. (57)

The loop lies in the x-y plane with its center at (x, y, z) = (zθ, 0, z). We label the azimuth
of a point on the loop by angle φ with respect to the x axis. Then, the (x, y, z) coordinates
of the point are,

(zθ + εa cosφ, εa sinφ, z). (58)

The distance r between the point and the z axis is,

r =
√

(zθ)2 + (εa)2 + 2εazθ cosφ. (59)

The line element on the loop of radius εa is,

dl = εadφ(− sinφ, cosφ, 0). (60)

The magnetic field at the loop is,

B = (Bx, By, Bz) =

(
Br(r, z)

zθ + εa cosφ

r
, Br(r, z)

εa sinφ

r
, Bz(r, z)

)

≈
(
−B ′

z

zθ + εa cosφ

2
,−B ′

z

εa sinφ

2
, Bz − (zθ)2 + (εa)2 + 2εazθ cosφ

4
B ′′

z

)
, (61)

using eqs. (19) and (53). The force element is then,

dF = Idl× B = Iεadφ

[
ρ̂Bz(r, z) + ẑ

B ′
z

2
(εa + zθ cos φ)

]
. (62)

= Iεadφ

[
(x̂ cos φ + ŷ sin φ)

(
Bz − (zθ)2 + (εa)2 + 2εazθ cos φ

4
B ′′

z

)
+ ẑ

B ′
z

2
(εa + zθ cos φ)

]
,

where ρ̂ is the unit vector pointing radially outwards from the axis of the jet (ρ = εa).
The transverse force can be decomposed into a radial pinch (or expansion) as discussed

in sec. 3.1 plus a drag in the x direction. The longitudinal (z) force vanishes on the axis of
the jet, has a drag that is independent of azimuth, and another component that varies with
azimuth causing a torque (or shear).
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Drag Forces. We first ignore the radial pinch and the shear by integrating eq. (63 over φ
and using eq. (56) for I to obtain,

dF =
πσa4vzB

′
zε

3ΔεΔz

2

(
x̂

zθB ′′
z

2
− ẑB ′

z

)
. (63)

The z component of the drag force is the same as found previously in eq. (18). The retarding
force vanishes on the jet axis, and increases as the cube of the radius within the jet. As a
result, the core of the jet will move ahead of the outer regions.

In turn, we integrate this over ε to obtain the total force on a disc3. of thickness Δz,

F =
πσa4vzB

′
zΔz

8

(
x̂

zθB ′′
z

2
− ẑB ′

z

)
. (64)

In the equation of motion, we again replace differentiation by time with that by z,

F = mv̇ = πa2Δzρvzv
′. (65)

The components of the equation of motion of the conducting jet are thus,

v′
x =

σa2zθB ′
zB

′′
z

16ρ
, and v′

z = −σa2(B ′
z)

2

8ρ
. (66)

We will use the example of a semi-infinite solenoid to illustrate the effect of the eddy
currents on the jet velocity, because the needed field derivatives have simple analytic forms.
The form of the trajectory, (51), assumes that the center of the magnet is at the origin.
Suppose the length of the physical magnet is α times its diameter D, so that the coil extends
over −αD/2 ≤ z ≤ αD/2. Then, the field of the physical magnet can be represented by the
field of a semi-infinite solenoid whose coil begins at z = −αD/2. Comparing with sec. 3.1.3,
the field derivatives are,

Bz = Bz(0, z) =
B0

2

(
1 +

z + αD/2√
(D/2)2 + (z + αD/2)2

)
=

B0

2

(
1 +

w√
1 + w2

)
, (67)

B ′
z =

dBz(0, z)

dz
=

B0

2

(D/2)2

[(D/2)2 + (z + αD/2)2]3/2
=

B0

D

1

(1 + w2)3/2
, (68)

and

B ′′
z =

d2Bz(0, z)

dz2
= −3B0

2

(D/2)2(z + αD/2)

[(D/2)2 + (z + αD/2)2]5/2
= −6B0

D2

w

(1 + w2)5/2
, (69)

where w = 2z/D + α.
Inserting (67-69) into (66), we see that v′

z is always negative but that v′
x is negative only

until the jet enters the magnet (z = −αD/2). Integrating (66) from −∞ to z, we find that
the velocity components of the jet are,

vx = vx,−∞ − 3σa2B2
0θ

1024ρD

[
π

2
+ tan−1 w +

w

1 + w2
+

2w

3(1 + w2)2
− 16z

3D(1 + w2)3

]
, (70)

3If we desire a calculation for a sphere rather than a disc, Δz times the integration over ε becomes
2a
∫ 1

0
ε3
√

1 − ε2dε = 4a/15, so Fz = −2πσa5vz(B′
z)2/15. See also [7]
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and

vz = vz,−∞ − 3σa2B2
0

128ρD

[
π

2
+ tan−1 w +

w

1 + w2
+

2w

3(1 + w2)2

]
. (71)

Of course, vx,−∞ = θvz,−∞ by assumption. The velocity components of the jet when it
reaches the center of the magnet (z = 0, w = α) are

vx,0 = θvz,−∞ − 3σa2B2
0θ

1024ρD

[
π

2
+ tan−1 α +

α

1 + α2
+

2α

3(1 + α2)2

]
, (72)

and

vz,0 = vz,−∞ − 3σa2B2
0

128ρD

[
π

2
+ tan−1 α +

α

1 + α2
+

2α

3(1 + α2)2

]
, (73)

Thus, while both vx and vz are reduced on entering the solenoid, the relative reduction
in the x velocity is only 1/8 that of the z velocity. As a consequence, the angle θ of the
trajectory to the axis of the solenoid actually increases as the jet enters the magnet. For
example, suppose that vz,−∞ is 3 times the loss of velocity on entering the magnet. Then,

vz,0 =
2

3
vz,−∞, vx,0 =

23

24
θvz,−∞, (74)

and the angle of the trajectory at the center of the magnet is,

θ0 =
vx,0

vz,0
=

69

48
θ = 1.44θ. (75)

Figure 19 illustrates the variation of vx, vz and θ of the jet as a function of z.
We are greatly encouraged by these idealized calculations that the effect of eddy currents

on the transverse velocity of the jet will not be too severe.
The above analysis is only for the drag force on the jet as a whole. Recall that the force

varies with radius within the jet, and so leads to longitudinal distortions as discussed in
sec. 3.1. The variation of the drag force in x leads to additional torques and shears, which
we now discuss.

Torque and Shear. The magnetic forces on the eddy currents also produce a torque that
will twist the jet about the axis perpendicular to the plane of the jet motion – the y axis in
our example.

The torque dN on a small element of a current ring about its center can be calculated
from eq. (63) as,

dN = aε(x̂ cosφ + ŷ sinφ) × (Idl× B)

=
a2ε2IB ′

z

2
dφ(x̂ sinφ − ŷ cos φ)(εa + zθ cos φ). (76)

On integrating over φ and recalling eq. (56) for I , we find that Nx = 0 and,

dNy =
π

4
zθσa4vzB

′2
z ε3ΔεΔz. (77)
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Figure 19: vx, vz and θ of the jet as a function of z as it enters a solenoid of
aspect ratio α = 2, according to eqs. (70-71). The initial z velocity of the jet
is taken to be 3 times the loss of velocity on entering the solenoid.

The sense of rotation is to align the axis of the jet with the axis of the magnet as the jet
enters the field.

Integrating over ε we find the total torque on a disc of radius a and thickness Δz to be,

Ny =
π

16
zθσa4vzB

′2
z Δz ≈ xFz

2
. (78)

The moment of inertia of the disc about a diameter is ma2/4 = πρa4Δz/4. Hence, the
angular acceleration of the azimuthal angle ϕ of the disc about the y axis is,

ϕ̈ = vz
dϕ̇

dz
=

θσzB
′2
z vz

4ρ
, (79)

which is independent of the radius of the jet. Using B ′
z from eq. (68), we have

dϕ̇

dz
=

θσB2
0

4ρD2

z

(1 + w2)3
, (80)

where as before, w = 2z/D + α and α = L/D. This can be integrated once to give,

ϕ̇ = vz
dϕ

dz
= −3θσB2

0

128ρ

[
απ

2
+ α tan−1 w +

αw

1 + w2
+

2(1 + αw)

3(1 + w2)2

]
. (81)

If we ignore the variation in vz with position, this can be integrated once more to yield,

ϕ(z) = −3θσB2
0D

256ρvz

[(
αw +

1

3

)(π

2
+ tan−1 w

)
+

α − w

3(1 + w2)

]
. (82)
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At the center of the magnet, w = α, the total angle of rotation of the disc is,

ϕcenter = −3θσB2
0D

256ρvz

[(
α2 +

1

3

)(π

2
+ tan−1 α

)]
≈ −3πα2θσB2

0D

256ρvz
, (83)

where the approximation holds for α somewhat larger than 1. For example, if α = L/D = 2,
D = 0.2 m, B0 = 20 T and vz = 10 m/s, we find ϕcenter ≈ −4πθ. With θ = 0.1 rad, then
ϕcenter ≈ −0.4π.

Equation (81) indicates the interesting result that the rate of change of rotation is inde-
pendent of the velocity, so the total rotation can be suppressed by increasing the jet velocity,
lowering the transit time.

A liquid jet would presumably not rotate. Rather, there would be a shear, in which the
portion of the jet closer to the axis is retarded more than that farther out. Our estimate that
ϕcenter ≈ 90◦ can perhaps be reinterpreted as indicating that the shear distance along the
jet axis will amount to roughly the jet radius when the jet reaches the center of the magnet.
This would not be troublesome.

3.3 Laboratory Observations of Eddy Currents

We have augmented our analytic results on eddy currents by observations of the motion
of brass spheres, discs and rods in the field of the old Princeton cyclotron magnet, whose
central field is 1 T, with a gap of 8′′ between the 30′′-diameter pole tips.

The spheres experienced no retarding forces due to eddy currents so long as the motion
was in straight lines, whether in the uniform field region or in the fringe field. But a frictional
torque opposed any rotation, even in the uniform field region.

Disks and rods experienced no drag force during steady motion in the uniform field
region, but a transient drag force was experienced as the disc crossed the fringe field. Drag
forces were readily observed if the trajectory of the disk was curved when in the uniform
field region. Very strong frictional torques arose when the disc or rod was rotated about any
axis when in the uniform field region.

We also got a negative result for the following experiment. A brass rod was slid along an
aluminum V-channel, all of which was in the uniform field region. We thought that perhaps
the v×B force on the electrons in the moving rod could generate a sideways current, which
could flow in a complete circuit with the aluminum channel as the back leg. Perhaps the
sliding contact was too poor to permit significant currents to flow.

Thus, we found no evidence for a “magnetic viscosity” in the case of uniform motion at
right angles to a uniform magnetic field. These observations are generally encouraging that
a conducting jet can move through the fringe field of a solenoid magnet with only minor
perturbation.

4 Measurement of Resistivities

The resistances quoted in Table 2 are probably for the alloys at room temperature, i.e.,
solid. We have performed a simple measurement of the resistance of alloys 136 and 255 in
the liquid state, using capillary tubes about 28 cm long. The inner diameters were stated
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by the supplier as 0.635 mm and 1.27 mm. The tube were bent into a ‘U’ of radius about 3
cm and heated in an oven to around 160◦C so that they could be filled with samples of the
alloys.

The resistance of the capillary tube plus leads and contacts was measured with a Keithley
626 meter. The resistance of the leads plus contacts dipped in a single pool of liquid alloy
was also measured and subtracted to yield the resistance of only a tube of liquid. Converting
the results to conductivities we find σ136 = 1.35×106 MKS units for alloy 136, and that this
value is 85% that of the conductivity measured by us at room temperature. For liquid alloy
255 our result is σ255 = 1.31 × 106 MKS units.

Our result for alloy 136 is very similar to that in Table 2, but our result for alloy 255
shows a slightly higher conductivity.

5 Jet Velocity vs. Pressure

Suppose the liquid metal is stored in a tank of area A perpendicular to the flow, and the
pressure is P above atmospheric. A valve lets a jet of liquid escape through an aperture of
area a � A.

Then, Bernoulli’s equation tells us that the flow velocity v out the aperture obeys,

1

2
ρv2 = P +

1

2
ρV 2, (84)

where ρ is the density of the liquid and V is the velocity of the liquid surface of area A in
the tank. The equation of continuity for an incompressible liquid tells us that av = AV , so
that,

v =

√
2P

ρ(1 − (a/A)2)
≈
√

2P

ρ
. (85)

The Bi-Pb alloys have density ρ ≈ 10 g/cm3, so the jet velocity would be,

v[m/s] ≈
√

20P [atm.]. (86)

For example, to reach v = 4.5 m/s would require 1 atm. overpressure in the storage tank.

6 The Rayleigh Instability of the Jet

6.1 Zero Magnetic Field

Following earlier work by Plateau, Rayleigh [8] deduced that a cylindrical jet is unstable
against perturbations of wavelength (along the jet axis) greater than the circumference of
the jet. The result of the instability is the breakup of the jet into droplets, commonly seen
as water exits a nozzle. The characteristic time for onset of the instability is,

τ = 3

√
r3ρ

T
, (87)
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where the jet has radius r, mass density ρ and surface tension T . The length of the jet before
breakup is then vτ , where v is the velocity.

An example of breakup of a 0.5-mm-diameter mercury jet has been reported by Ansely et
al. [10], as shown in Fig. 20. See also [11, 12, 13]. The density of mercury is ρ = 13.5 g/cm3

and the surface tension is T = 470 dyne/cm. Then eq. (87) gives τ = 0.002 s for r = 0.025
cm. At 40 psi, the jet velocity was v = 5 m/s, so the characteristic length before breakup is
predicted to be 1 cm, in good agreement with the value 1.4 cm reported by Ansley et al. It
thus appears that Rayleigh’s formula is valid for liquid metal jets.

Figure 20: Length before breakup, and velocity of a mercury jet of radius
0.025 cm.

Turning to parameters relevant to the muon collider target, consider a gallium jet of
radius 1 cm. The density is ρ = 6 g/cm2, and the surface tension is T = 360 dyne/cm.
Then, the instability time is τ = 0.4 s. For a jet velocity of 10 m/s, the breakup length
would be about 4 m, which is satisfactory. If the jet radius is reduced to 0.5 cm, the breakup
length drops to 1.4 m.

6.2 Nonzero Axial Magnetic Field

The effect of a uniform axial magnetic field on the Rayleigh instability has been considered
by Chandrasekhar [9]. There is no change in the instability time for a nonconducting liquid
unless its permeability is significantly greater than 1. For a conducting liquid, Chandrasekhar
introduces a quality factor,

Q =
μB2

4πη

√
r3

ρT
, (88)

where μ is the permeability, B is the axial magnetic field strength, and η is called the
“resistivity”; I belive that η = c2/4πσ, where σ is the electrical conductivity. For Q > 20,
the Rayleigh instability is suppressed in the first approximation.

For mercury, η = 7.5 × 103 cm2/s and Q = 1.33 × 10−7B2r3/2 in Gaussian units. Thus,
for a 20-T axial magnetic field and r = 1 cm, Q ≈ 5000, and the Rayleigh instability should
be almost completely damped. This conclusion is little changed by variations in the radius

29



or resistivity by factors of 2, and should be valid for all liquid metal jets under consideration
here.

The quality factor reaches 20 in fields slightly over 1 T (for r = 1 cm). Hence, unless the
jet nozzle is more than a meter away from the region where the magnetic field exceeds 1 T,
the Rayleigh instability will be of little concern for us.

It remains that the jet may be significantly perturbed by the nonuniform magnetic field
as discussed in sec. 3, and/or by the thermal shock mentioned below.

7 Will Beam Heating Boil the Liquid Target?

If the heat from interaction of the proton beam with the liquid target boiled the target, the
target might disperse violently. This would probably not have any effect on the target while
the proton beam is still in it, since the time scale for this is only 1 nsec, while the time
scale for dispersion is r/vsound ≈ 10 μsec. However, the operation of the liquid-target facility
would be complicated considerably.

To estimate the magnitude of the problem we start from Fig. 4.13, p. 186 of the 1996 Muon
Collider Feasibility Study [1]. A computer simulation indicated that the power deposited in
one interaction length of a mercury target by 30 Hz of pulses of 5 × 1013 30-GeV protons
would be about 750 kW. Then, for a single pulse of, say, 1014 protons about 50 Joules/g
would be deposited.

One interaction length of mercury is about 115 gm/cm2, so the energy deposition would
be about 0.43 J-cm2/gm. If we suppose this energy is deposited uniformly over radius r,
which we can vary by the optics of the proton beam, then the energy deposition is,

0.14

[r/1 cm]2
J/gm. (89)

We haven’t found any data on the boiling point of the alloys in Table 2, so we take
this to be the lowest boiling point of any of the constituent elements, about 1600◦C due to
the bismuth. For a liquid target operating around 100◦C the temperature rise to boiling is
then about 1500◦C. The heat capacity of the alloys will be roughly that of bismuth or lead,
namely about 0.13 J/(gm-◦C). Hence, it will take about 200 J/gm to bring the liquid target
to a boil.

Comparing with expression (89), we see that so long as,

r > 0.025 cm, (90)

the liquid jet will not be brought to a boil by the proton beam.
It seems unlikely that boiling will be a problem for any realistic proton beam radius,

which can then be made as small as otherwise convenient.
A small radius will permit the liquid jet velocity to be lower, as discussed in sec. 2 above.

8 Thermal Shock

While it appears that the proton beam would not boil the liquid jet, the beam does dump
a lot of energy into the jet. This energy will initiate a pulse of thermal expansion that
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propagates radially outward at the speed of sound – a shock wave. It is possible that this
shock wave disperses the liquid into droplets, which could lead to operational difficulties.

We present a simplified model to estimate the regime in which a pressure wave might
“tear” the liquid apart. When an energy ΔU (per gram) is deposited quickly in the liquid,
we first calculate the temperature change ΔT that will eventually occur. Then, we calculate
the strain, Δl/l corresponding to that ΔT , and evaluate the stress P corresponding to that
strain. “Tearing” is likely to occurs if the stress exceeds the tensile strength.

We suppose that the effective tensile strength of a liquid metal is similar to that the same
metal in solid form. For most metals, the tensile strength (pressure) P is about 0.002 of the
modulus of elasticity, E (Young’s modulus). Thus,

ΔU = CΔT =
C

α

Δl

l
=

C

α

P

E
≈ 0.002

C

α
, (91)

where C is the heat capacity (J/gm-K), α is the coefficient of thermal expansion (1/K), and
the approximation holds on setting the stress equal to the tensile strength. Ga-In liquid, for
example, has C ≈ 0.3 J/gm-K and α ≈ 2 × 10−5/K. Hence, we expect the liquid will “tear”
when ΔU ≈ 30 J/gm. This is very similar to the expected energy deposition in the muon
collider target from a pulse of 1014 16-GeV protons.

Indeed, experience at CERN/ISOLDE [14] with liquid lead targets exposed to short beam
pulses indicates that significant disruption of the liquid can be expected.

In the future we may wish to simulate this effect using a finite-element-analysis program.
Ultimately the viability of a liquid-jet target must be confirmed experimentally, preferably
in a proton beam. Experiments in which an “exploding wire” is placed along the axis of a
column of liquid metal may also provide useful information.

The thermal shock will be less in a material with a lower coefficient of thermal expansion.
Bismuth alloys are favorable in this regard.

9 Beam-Induced Radioactivity

The high flux of protons into the target will induce some radioactivity no matter what the
target consists of.

If the target contains bismuth, a sequence that results in radioactivity is,

Low-energy neutron+Bi209
83 → Bi210

83 +γ, Bi210
83 → Po210

84 +β− (half life = 5 days). (92)

Po210 has a half life of 135 days and decays primarily via a 5.3-MeV α, but has a 0.1% branch
to an 803-keV γ.

If, say, every beam proton results in one transmuted Bi atom, then the steady-state Po
population would be equal to the total flux of protons in 135 days = 135× 105 × 1015 ≈ 1022

atoms, assuming a proton flux of 1015/s. The number of Po decays per second would be just
1015 in the steady state, i.e., about 30,000 Curies.

The α-particles will be almost entirely absorbed in the target, but the 800-keV x-rays
present more of a problem. The steady-state strength of the x-rays corresponds to about 30
Curies (assuming each proton results in one Po atom).
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Before committing to a target containing Bi the activation of Bi by a high-energy proton
beam should be studied further, both experimentally and theoretically.

A liquid target based on an In-Pb-Sn alloy (Fig. 17) might be more satisfactory from the
point of view of induced radioactivity.

References

[1] R. Palmer et al., μ+μ− Collider. A Feasibility Study, BNL-52503 (July, 1996),
http://physics.princeton.edu/~mcdonald/examples/accel/muon_collider96.pdf

[2] Alloy Phase Diagrams, 2nd ed., Vol. III of the ASM Handbook (ASM International,
1997). ASM = American Society of Metals.

[3] L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed.
(Butterworth-Heinemann, Oxford, 1984).

[4] J.D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999).

[5] T.G. Cowling, Magnetohydrodynamics, 2nd ed. (Interscience, 1975),
http://physics.princeton.edu/~mcdonald/examples/plasma/cowling_rpp_25_244_62.pdf

[6] R.J. Weggel, Behavior of Conducting Solid or Liquid Jet Moving in Magnetic Field: 1)
Paraxial; 2) Transverse; 3) Oblique, BNL 65611 (June 1998),
http://www.hep.princeton.edu/~mcdonald/mumu/target/metaljet.pdf

[7] J. Walker and W.M. Wells, Drag Force on a Conductive Sphereical Drop in a Nonuniform
Magnetic Field, ORNL/TM-6976 (Sept. 1979),
http://physics.princeton.edu/~mcdonald/examples/fluids/walker_ornl_tm6976_79.pdf

[8] Lord Rayleigh, The Theory of Sound (reprinted by Dover, 1945), Vol. 2, p. 362,
http://physics.princeton.edu/~mcdonald/examples/fluids/rayleigh_theory_of_sound_v2.pdf

[9] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (reprinted by Dover,
1981), §112.

[10] W.E. Ansley, S.A. Merryman and M.F. Rose, Characteristics of Liquid Mercury Jets
and the Potential Application as an Opening Switch, Proc. Plasma Conf. 1, 27 (1993),
http://physics.princeton.edu/~mcdonald/examples/fluids/ansley_ppc_1_127_93.pdf

[11] R. Criss and M.F. Rose, Spatial and Temporal Development of Emissions from and
Exploding Mercury Jet, IEEE Trans. Plasma Sci. 23, 145 (1995),
http://physics.princeton.edu/~mcdonald/examples/fluids/criss_ieeetps_23_145_95.pdf

[12] R. Criss and M.F. Rose, Switching and Scaling Behavior of an Exploding Mercury Jet,
Proc. Plasma Conf. 1, 316 (1995),
http://physics.princeton.edu/~mcdonald/examples/fluids/criss_ppc_1_316_95.pdf

32



[13] W.E Ansley and M.F. Rose, Evaulation of Liquid-metal Jets as the Conductor in a
Rep-Rated, Exploding Fuse Opening Switch, IEEE Trans. Magnetics 32, 1980 (1996),
http://physics.princeton.edu/~mcdonald/examples/fluids/ansley_ieeetm_32_1980_96.pdf

[14] J. Lettry et al., Experience with ISOLDE Molten Metal Targets at the CERN-PS
Booster, Proc. ICANS95 2, 595 (1995),
http://physics.princeton.edu/~mcdonald/examples/accel/lettry_psi-proc-95-02_595.pdf

33


