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Abstract

The need for intense muon beams for muon colliders and for neutrino factories
based on muon storage rings leads to a concept of 1-4 MW proton beams incident
on a moving target that is inside a 20-T solenoid magnet, with a mercury jet as a
preferred example. Novel technical issues for such a system include disruption of the
mercury jet by the proton beam and distortion of the jet on entering the solenoid,
as well as more conventional issues of materials lifetime and handling of activated
materials in an intense radiation environment. As part of the R&D program of
the Neutrino Factory and Muon Collider Collaboration, an R&D effort related to
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targetry is being performed within the context of experiment E951 at Brookhaven
National Laboratory, first results of which are reported here.
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1 THE TARGETRY CONCEPT

A muon collider [1] or a neutrino factory based on a muon storage ring [2—
4] require intense beams of muons, which are obtained from the decay of
pions produced in proton-nucleus collisions. To maximize the yield, pions of
momentum near 300 MeV /¢ should be captured [7-9], as illustrated in Fig. 1.
For proton energies above 10 GeV, the pion yield per unit of proton beam
energy is larger for a high-Z target [8], as shown in Fig. 2. For proton beam
energies in the MW range, beam heating would melt or crack a stationary
high-Z target [10], so a moving target must be used. A mercury jet target is
the main focus of BNL E951 [6], although R&D is also being conducted on
a carbon target option [2,11,12] as might be suitable for a low-energy proton
source [13], and conceptual studies have been carried out for rotating-band
targets [14,15], a tantalum/water target [16], and a liquid-lithium target [17].
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Fig. 1. Comparison of pion yield measured in BNL E910 [7] with a MARS calculation
[8]-

The low-energy pions are produced with relatively large angles to the proton
beam, and efficient capture into a decay and phase rotation channel is obtained
by surrounding the target with a 20-T solenoid magnet, whose field tapers
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Fig. 2. Calculated yield of pion vs. atomic mass number of targets in proton beams
of 8, 16 and 30 GeV [8].

down to 1.25 T over several meters [18,19], as sketched in Fig. 3. See also
Figs. 2 and 3 of [9]. Pion yield is maximized with a mercury target in the form
a l-cm-diameter cylinder (Fig. 4), tilted by about 100 mrad with respect to
the magnetic axis (Fig. 5). To permit the proton beam to interact with the
target over 2 interaction lengths, the proton beam is tilted by 33 mrad with
respect to the mercury jet axis.
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Fig. 3. Concept of targetry based on a mercury jet and proton beam at 100 mrad
and 66 mrad, respectively, to the axis of a 20-T solenoid magnet.

The use of a mercury jet target raises several novel issues. The rapid energy
deposition in the mercury target by the proton beam leads to intense pressure
waves that can disperse the mercury [6,20-24]. Further, as the mercury enters
the strong magnetic field eddy currents are induced in the mercury, and the
Lorentz force on these currents could lead to distortion of the jet [6,24-29]. On
the other hand, the magnetic pressure on the mercury once inside the solenoid
will damp mechanical perturbation of the jet [21,30].



0.30

0.25

Yieldat9m

0.20

0.15

®—e +, 50 mrad
O—O0 -, 50 mrad
A—a +,100 mrad
A&—2A =, 100 mrad
=—=a +, 150 mrad
o—~0 -, 150 mrad

16 GeVonHg |

3 6

9

12 15

Target radius (mm)

Fig. 4. Calculation of the yield of pions as a function of radius of a mercury target,
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Fig. 5. Calculation of the yield of pions from a mercury target as a function of the
tilt angle of the proton beam and target to the axis of a 20-T solenoid magnet [8].

To address these issues an R&D program is now underway.

2 THE TARGETRY R&D PROGRAM

In the USA, R&D on targetry for a neutrino factory and muon collider has been
formalized as BNL experiment 951 [6]. This project maintains close contacts
with related efforts in Europe [31] and in Japan [32].

The broad goal of E951 is to provide a facility that can test the major issues of
a liquid or solid target in intense proton pulses and in a 20-T magnetic field.
A sketch of the eventual facility is shown in Fig. 6.
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Fig. 6. Sketch of the full configuration of BNL E951, the targetry R&D facility.

Present activities in E951 focus on the interaction of intense proton pulses with
targets in zero magnetic field. European targetry studies presently emphasize
the interaction of mercury jets with a magnetic field, the operation of rf cavities
near high-power targets [33], and evaluation of target materials [34].

2.1 Mercury Target Studies

The present R&D program on mercury jets is an outgrowth of work at CERN
in the 1980’s in which a prototype mercury jet was prepared (Fig. 7), but was
never exposed to a beam.

High-speed photographs of mercury jet target for CERN-PS-AA (laboratory tests)
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Fig. 7. Photographs of a 3-mm-diameter mercury jet (C.D. Johnson, 1988).

Experiment 951 is conducted in the A3 beamline of the BNL AGS [35] into
which a single bunch, 100 ns long, of up to 5 x 10'? 24-GeV protons can be
extracted and brought to a focus as small as 0.6 x 1.6 mm?. The dispersal
of both static and moving mercury targets by the proton beam was observed
via two high-speed cameras using shadow photography with a laser diode [36].
Figure 8 shows the static target cell, and Figs. 9 and 10 show the effect of
pulses of 2-4 x 102 24-GeV proton on the mercury. Dispersal velocities of up
to 50 m/s were observed. The air in the target cell slowed the droplet velocity
by a factor of two over 10 cm. A key result from the jet studies was that the
dispersal of mercury by the proton beam was confined to that part of the jet
directly intercepted by protons.



Fig. 8. Photograph of the static mercury target cell.

Fig. 9. Exposures of 25 us at t = 0, 0.5, 1.6, 3.4 msec after a pulse of 2 x 102
protons interacted with a static “thimble” of mercury 1.0 ¢m in diameter and 1.5
cm deep. The grid is 1 cm x 1 cm.

Thus, it appears that the dispersal of mercury by a proton beam is dramatic,
but not violent, and that the dispersal will be a relatively modest issue for a
target facility that operates at 15 Hz [39].



Fig. 10. Exposures of 0.2 us at t = a) 0.3, and b) 0.8 msec after a pulse of 4 x 1012
protons interacted with a static “thimble” of mercury. The grid is 1 cm x 1 cm.
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Fig. 11. Elevation view of the target cell that produced a 1-cm diameter jet of
mercury with 2.5 m/s velocity that overlapped with the 24-GeV proton beam for
12 cm.

2.2 Solid Target Studies

E951 included exposures of several solid targets to the proton beam, using
fiberoptic strain sensors with 500 kHz bandwidth (Fig. 13) to characterize
the transient response of the targets to the pressure waves induced by beam
energy deposition [40]. As expected, a carbon-carbon composite target with
thermal expansion coefficient of less that 107%/K showed much less strain than
an ATJ graphite target (Fig. 15).

The issue of the rate of sublimation of carbon targets at the elevated temper-
atures (> 1900C) caused by exposure to a 1-MW beam is under continuing
laboratory study. Calculations indicate that a helium atmosphere can greatly
extend the operational life of a carbon target against sublimation [41].

3 THE TARGET FACILITY

A preliminary design has been made of a target facility based on the concepts
of the R&D program described above [3,9,42]. Low-energy pions are produced
with relatively large angles to the proton beam, and efficient capture into a



Fig. 12. Exposures of 25 us at t = a) 0, b) 0.75, ¢) 10, and d) 18 ms after a pulse
of 3.8 x 10'2 protons interacted with a free jet of mercury 1 cm in diameter.
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Fig. 13. Sketch of a fiberoptic strain sensor (FISO Technologies,
http://www.fiso.com).

decay and phase rotation channel [43] is obtained by surrounding the target
with a 20-T solenoid magnet, whose field tapers down to 1.25 T over several
meters, as sketched in Fig. 16. Pion yield is maximized with a mercury target
in the form a 1-cm-diameter cylinder, tilted by about 100 mrad with respect
to the magnetic axis. To permit the proton beam to interact with the target
over 2 interaction lengths, the proton beam is tilted by 33 mrad with respect
to the mercury jet axis. See also Fig. 17.

A mercury pool inside the capture solenoid intercepts the mercury jet and
the unscattered proton beam, as shown in Fig. 18. To suppress splashes of
the mercury by the jet and/or proton beam as they enter the pool, a set of
baffles can be arrayed above the pool and a particle bed submersed within
it. The mercury pool, surrounding tungsten carbide/water shielding, and the



Fig. 14. View of the ATJ carbon and carbon-carbon composite targets equipped
with fiberoptic strain sensors.
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Fig. 15. Fiberoptic strain gauge data from carbon targets: a) a pulse of 3 x 102
24-GeV protons on ATJ carbon; b) a pulse of 2 x 10'? protons on a carbon-carbon
composite.

resistive insert of the 20-T capture magnet [19] are isolated from upstream
and downstream beamline elements by a pair of double-walled Be windows.
This entire unit can be replaced by remote manipulation should failure occur.

The absorbed radiation dose on components near the target is quite large [8],
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Fig. 16. Sketch of the target and capture system based on a mercury jet inside a
20-T solenoid magnet.
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Fig. 17. The inner region of the 20-T capture magnet along with the tilted mercury
jet target and proton beam.

as illustrated in Fig. 19, such that in a 4 MW proton beam their lifetime
against radiation damage may only be 5 years.

The capture solenoid is encased in thick concrete shielding as part of the target
facility that includes an overhead crane, hot cells with remote manipulation
capability, and a mercury pumping and purification loop [42], as sketched in
Fig. 20.
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