ENERGY DEPOSITION WITHIN SUPERCONDUCTING COILS OF A 4-MW TARGET STATION (PAC11, TUP179)

BROOKHAVEN

N. Souchlas¹, H.G Kirk¹, X. Ding², J.J. Back³, R.C. Fernow¹, K.T. McDonald⁴, R.J. Weggel⁵ ¹BNL, Upton, NY 11973, USA, ²UCLA, Los Angeles, CA 90095, USA, ³Warwick University, Coventry, CV4 7AL UK, ⁴Princeton University, Princeton, NJ 08544, USA, ⁵Particle Beam Lasers, Inc., Northridge, CA 91324

A series of studies was performed by using the MARS15+MCNP code to optimize the tungsten-carbide + water shielding of superconducting magnets for the target station at a Muon Collider or Neutrino Factory. The goal is to provide a 10-year lifetime of these magnets against radiation damage due to secondary particles from the target. For this, the peak density of deposited power can be no more than 0.15 mW/g.

