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ISIS

World’s most productive spallation neutron source
(if no longer highest pulsed beam power)

World-leading centre for research in the physical and 
life sciences 

National and international community of >2000 
scientists  — ISIS has been running since 1984

Research fields include clean energy, the 
environment, pharmaceuticals and health care, 
nanotechnology, materials engineering and IT

~450 publications/year (~9000 total over 26 years)

MICE (Muon Ionisation Cooling Experiment)
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High-impact publications 
per instrument

High-impact publications 
÷ facility budget

Average numbers of high-impact publications per year in 2008, 2009 and 2010:  ISIS, 129;  ILL, 162.

High-impact publications for ILL and ISIS



Rutherford Appleton Laboratory, Oxfordshire

ISIS — neutrons

Diamond — X-rays





ISIS from air
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ISIS accelerators

Juvenile RFQ

Venerable linac

Mature synchrotron ~0.2 MW, 50 pps

Two target stations 40 pps to TS-1
10 pps to TS-2
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RFQ:  665 keV H–, 4-rod, 202 MHz

Linac:  70 MeV H–, 25 mA, 202 MHz, 200 µs, 50 pps

Synchrotron: 800 MeV proton, 50 Hz
5 µC each acceleration cycle
Dual harmonic RF system

Targets: 2 × W (Ta coated)
Protons:  2 × ~100 ns pulses, ~300 ns apart

Moderators: TS-1:  2 × H2O, 1 × liq. CH4, 1 × liq. H2
TS-2:  1 × liq. H2 / solid CH4, 1 × solid CH4

Instruments: TS-1:  20 TS-2:  7 (+ 4 more now funded)

~340 staff



70 MeV 202 MHz 4-tank H– linac



1.3–3.1 + 2.6–6.2 MHz 70–800 MeV proton synchrotron



ISIS TS-1 experimental hall, 20 instruments



ISIS TS-2 experimental hall, 7 instruments + 4 under way



TS-1 tungsten target 
(plate target)



TS-2 tungsten target (~solid cylinder)



ISIS Upgrades

4) Upgrade 3) + long pulse mode option

0) Linac and TS-1 refurbishment

1) Linac upgrade, ~0.5 MW on TS-1

2) ~3 GeV booster synchrotron: MW target

3) 800 MeV direct injection: 2–5 MW target
Overlap with NF
proton driver

Seen as one of four “big opportunities” for STFC



2)  ~3.3 GeV RCS fed by 
bucket-to-bucket transfer 
from ISIS 800 MeV 
synchrotron (1MW, perhaps 
more)

3)  Charge-exchange 
injection from 800 MeV linac 
(2 – 5 MW)

1)  Replace 70 MeV 
ISIS linac by new ~180 
MeV linac (~0.5 MW) 

ISIS MW Upgrade Scenarios
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3) Charge-exchange 
injection from 800 MeV 
linac (2 – 5 MW)

1)  Replace ISIS 70 MeV 
linac by new ~180 MeV linac 
(~0.5 MW)

ISIS MW Upgrade Scenarios

2) Based on a ≈ 3.3 GeV 
RCS fed by bucket-to-bucket 
transfer from ISIS 800 MeV 
synchrotron (1MW, perhaps 
more) 

More details:  John Thomason’s talk



Common proton driver for neutrons and neutrinos

• Based on MW ISIS upgrade 
with 800 MeV Linac and 3.2 
GeV RCS

• Assumes a sharing of the beam 
power at 3.2 GeV between the 
two facilities

• Both facilities can have the 
same ion source, RFQ, chopper, 
linac, H− injection, accumulation 
and acceleration to 3.2 GeV

• Requires additional RCS machine in 
order to meet the power and energy 
needs of the Neutrino Factory



Neutrino factory
on Harwell site

muon linac

cooling
phase rotation
bunching

RLA 1

muon
FFAG

RLA 2

decay ring to Norsaq
155 m below ground

decay ring to INO
440 m below ground

• UKAEA land now
not to be 
decommissioned
until at least 2040
(unless we pay
for it!)

• Extensive geological 
survey data available, 
but needs work to 
understand implications 
for deep excavation
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ISIS upgrade option Proton Rep. Mean Mean Neutrons
energy rate current power cf. present

Linac + TS-1 refurb. TS-1 800 MeV 40 pps 200 µA 0.16 MW × 2
TS-2 800 MeV 10 pps 50 µA 0.04 MW × 1

Linac upgrade TS-1 800 MeV 47 pps 552 µA 0.44 MW × 4
TS-2 800 MeV 3 pps 48 µA 0.04 MW × 1

3.2 GeV synch. TS-3 3.2 GeV 48 pps 308 µA 0.98 MW × 6
TS-2 3.2 GeV 2 pps 13 µA 0.04 MW × 1

800 MeV ch. exch. inj. TS-3 3.2 GeV 49 pps 1177 µA 3.77 MW × 12
TS-2 3.2 GeV 1 pps 24 µA 0.08 MW × 2
TS-3 3.2 GeV 48 pps 1153 µA 3.69 MW × 12
TS-2 800 MeV 2 pps 48 µA 0.04 MW × 1

Useful neutrons scale less than linearly with power
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ISIS upgrade option Proton Energy Range Beam °C in target
energy per pulse in W diameter per pulse

Linac + TS-1 refurb. TS-1 800 MeV 3.2 kJ 23 cm 6 cm 1.8
TS-2 800 MeV 3.2 kJ 23 cm 3 cm 7.3

Linac upgrade TS-1 800 MeV 9.6 kJ 23 cm 6 cm 5.4
TS-2 800 MeV 9.6 kJ 23 cm 3 cm 22

3.2 GeV synch. TS-3 3.2 GeV 20kJ 130 cm 8 cm 1.2
TS-2 3.2 GeV 20kJ 130 cm 3 cm 8.3

800 MeV ch. exch. inj. TS-3 3.2 GeV 77 kJ 130 cm 8 cm 4.4
TS-2 3.2 GeV 77 kJ 130 cm 3 cm 31
TS-3 3.2 GeV 77 kJ 130 cm 8 cm 4.4
TS-2 800 MeV 19 kJ 23 cm 3 cm 44

Beam area × range, density, specific heat — very approximate
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Let Nf (neutrons/s) be fast neutron source strength,
let P (kW) be proton beam power,
let rt (cm) be characteristic dimension of fast-neutron-producing target,
let  (neutrons/cm²/s) be fast flux intercepted by moderator,
assume Ni (neutrons/s) to be number of neutrons useful for neutron 
beam line instruments,
and assume volume of fast-neutron-producing target to scale with 
power (i.e. there is a limiting watts/cm³ for removing heat). 
Then, very approximately,
Nf  P,
rt  P1/3,
  Nf / rt2,
Ni  ,
and so Ni  P /( P1/3)2 =  P1/3
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Activities of ISIS tungsten target removed in 2005
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Summary

Staged set of upgrades

Lot of design work being done [other WG]

We’ll certainly upgrade TS-1 — scenario 0

Linac upgrade (to ~0.5 MW) possible nationally

Higher powers internationally

Interested in establishing limits for solid targets
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STFC’s four “big opportunities”

HiPER 1

Square Kilometre Array (SKA) 2

Free Electron Light Source

ISIS Upgrades

1 European High Power laser Energy Research facility

2 3000 dishes each 15 m in diameter 
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ISIS operations

Typically 180 days a year running for users

Maintenance/shutdown
~1–2 weeks machine physics + run-up
~40-day cycle
~3-day machine physics

Machines run ~250 days per year overall

~5/year



Target Upgrade TS1

Matt Fletcher
Head, Design Division
ISIS Department
Rutherford Appleton Laboratory / STFC

Proton Accelerators for Science and Innovation, 12–14 January 2012, FNAL
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• Tungsten target  D2O cooled

• Moderators
• H2O  0.5 l    Gd poison   Boral decoupler
• CH4 0.5 l   Gd poison   Boral decoupler
• H2 0.8 l    no poison   no Cd decoupler

• Beryllium  (D2O cooled) reflector

• 18 Neutron Beam Holes
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Target Module

Ambient
Water

Moderators

Reflector   
(Be and D2O)

Methane 
Moderator
Hydrogen
Moderator
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HET

TOSCA

POLARIS

MAPS

MERLIN

SXD
eVS
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SANDALS
IRIS/OSIRIS/VESTA

LOQ
CRISP SURF

PRISMA/ROTAX/ALF

PEARL

HRPD/ENGIN-X GEM MARI
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• Neutron beam line heights unchanged

• Avoid realigning half the instruments (costly,  time consuming)

• Beam lines aligned with current moderators (Except N3 -
SURF which could be realigned to the bottom front 
moderator)

• Changing a void vessel window – 1-2 year shutdown and 
substantial risk to future operations

• Two top moderators – ambient

• Making top moderators cryogenic is not practical with existing 
transfer lines

• Two bottom moderators cryogenic

Constraints on the design of new instruments for TS-1
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Top Plug

Neutron Beam
Shutter - Open

Neutron Beam
Shutter - Closed

Target Reflector and 
Moderator Assembly

Neutron Beam
Insert

Target Void Vessel

Fixed iron shielding

Moveable iron shielding

Concrete shielding
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Void 
Vessel 
Window
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• Moderator materials

• Target, moderator and reflector geometry

• Poison and decoupler materials and arrangement

• Addition of pre-moderator(s)

• To perform an efficient optimisation each instrument should 
define a quantitative metric which is representative of its 
performance 

Options for  the design of new instruments for TS-1
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Constraints
• Existing, Operating and Old (25+ years)
• Cost / Benefit
• Beam Input – linked to Accelerator 

upgrade
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Constraints
• Flight line position
• Shielding to be at least the same
• Reliable
• Upgradeable in the future
• Life of targets >5 years
• Risk Low
• Change suspect parts
• Time
• Documentation
• Diagnostics
• Instrumentation upgrades not part of the project
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Constraints
• Conservative approach

– Known materials / cooling
– Bench tested where possible
– Manufacturing routes understood

• Flexibility for change within moderators
• Possible development moderator....



TS-1 tungsten 
target (plates)



Geometry and materials for MCNPX , ISIS W target #1


