
How to Increase the π/μ Yield by a Factor of 2.5 K. McDonald Princeton U. (Apr. 27, 2010)

We can increase π/μ yield simply by increasing the maximum transverse momentum, p_{\perp} , captured.

Present design captures only up to $p_{\perp} \sim 200$ MeV/c \Rightarrow Captures only 40% of pions, assuming $\langle p_{\perp} \rangle = 150$ MeV/c.

Of course, increasing the maximum p_{\perp} captured increases the transverse (pseudo)emittance.

But, if we don't care about this, we could "easily" increase the π/μ yield by a factor of 2.5.

For fixed field B_0 at the target, the radius r_0 of the target vessel is linear in the maximum p_1 captured:

$$r_0[\text{cm}] \approx 1 + \frac{0.6 p_{\perp,\text{max}}[\text{MeV} / c]}{B_0[\text{T}]}.$$

(The 1-cm offset is due to the tilt of the target.)

All the magnetic flux, $\Phi = \pi B_0 r_0^2$, within this radius is adiabatically shaped into a circle of radius r_f at the end of the "taper", where the field is B_f ,

$$r_f = r_0 \sqrt{\frac{B_0}{B_f}}.$$

Example: To increase the capture by 50%, we desire $p_{\perp,max} \sim 300$ MeV/c, which requires $r_0 \sim 10$ cm for $B_0 = 20$ T (rather than $r_0 = 7.5$ cm as in the baseline configuration).

Then we would need $r_f = 40$ cm for $B_f = 1.5$ T (rather than 30 cm as in the baseline configuration).

Or, if we wish to keep $r_f=30~{\rm cm}$, then we would need $B_f=2.25~{\rm T}$.