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Talk Outline

m FronTier code
m Distortion of the mercury jet entering magnetic field
m Simulation of the mercury jet — proton pulse interaction.

m Conclusions and future plans
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Main Ideas of Front Tracking

Front Tracking: A hybrid of Eulerian and Lagrangian methods

clolololololoao Two separate grids to describe the solution:
1. A volume filling rectangular mesh
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* No numerical interfacial diffusion

» Real physics models for interface propagation

 Different physics / numerical approximations
iIn domains separated by interfaces

SURFACEas
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The FronTier Code

FronTier is a parallel 3D multiphysics code based on front tracking

m Physics models include

m Compressible fluid dynamics
= MHD Interface untangling by

m Flow in porous media the grid based method

m Elasto-plastic deformations
m Realistic EOS models
m Exact and approximate Riemann solvers
m Phase transition models
m Adaptive mesh refinement
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Two Edges Four Corners



FronTier-MHD numerical scheme

Hyperbolic step

Elliptic step

* Propagate interface
» Untangle interface
 Update interface
states

» Apply hyperbolic

solvers
» Update interior
hydro states

Point Shift (top) or Embedded Boundary (bottom

 Generate finite element grid

* Perform mixed finite element discretization

or

 Perform finite volume discretization

* Solve linear system using fast Poisson solvers

\ 4

* Calculate
electromagnetic
fields

 Update front and
interior states



Main FronTier Applications

Rayleigh-Taylor
Instability

Richtmyer-Meshkov
Instability

Liquid jet breakup

and atgm%ition Tokamak refueling

through the ablation
of frozen D, pellets
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Jet entering 15 T solenoid

FronTier code:

« Explicitly tracked material interfaces
e Multiphase models

« MHD in low magnetic Reynolds
number approximation
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Previous Results (2005) L,
Aspect ratio of the jet cross-section. |
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Previous Results (2005) L,
Aspect ratio of the jet cross-section. |l
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Confirmation: Independent studies by Neil Morley, UCLA,
HIMAG code

100 mrad tilt angle

Aspect ratio = 1.4 in the solenoid center

z =50 cm z =60 cm
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Comparison with the theory

R. Samulyak et. al, Journal of Computational Physics, 226 (2007),
1532 - 1549.
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MERIT setup

Geometry of Hg system in Magnet

500 mm
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V=15m/s, B=15T
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V=20m/s, B=15T
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Comparison:V=15and 20 m/s, B=10and 15T

Jet distortion
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Experimental data

V=15m/s, B = 10T V=20m/s, B=10T

QuickTime™ and a QuickTime™ and a

TIFF (LZW) decompressor TIFF (LZW) decompressor
are needed to see this picture. are needed to see this picture.

B=15T B=15T
QuickTime™ and a QuickTime™ and a
TIFF (LZW) decompressor TIFF (LZW) decompressor
are needed to see this picture. are needed to see this picture.

Simulations only qualitatively explain the width of the jet in different view ports.
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Jet - proton pulse interaction. Evolution of models. e
Phase I: Single phase mercury (no cavitation)

m Strong surface instabilities and jet breakup observed in simulations

m Mercury is able to sustain very large tension
m Jet oscillates after the interaction and develops instabilities

Jet surface instablilities




Jet - proton pulse interaction.
Phase II: Cavitation models

Mm:fay [

fahoration

* We evaluated and compared homogeneous and
heterogeneous cavitation models:
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 TwWo models agree reasonably well

 Predict correct jet expansion velocity

« Surface instabilities and jet breakup
not present in in simulations
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Homogeneous model

Heterogeneous model
(resolved cavitation
bubbles)




Jet - proton pulse interaction
Phase II: Cavitation models in magnetic field

* The linear conductivity model predicts strong 11
stabilizing effect of the magnetic field
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« Stabilizing effect of the magnetic field is
weaker if conductivity models with phase

transitions are used (~ 20 % for Bruggeman’s
model)
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* If jet does not develop surface instabilities, the jet expansion is strongly

damped in 15 T magnetic field (radial current are always present).
Experimentally confirmed in MERIT.
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Jet - proton pulse interaction }iz
Phase Ill: Search of missing physics phenomena

Why surface instabilities and jet breakup are not
observed in simulations with cavitation?

Possible Cause:
* Turbulence nature of the jet

* Microscopic mixture and strong sound speed reduction of the
homogeneous model (separation of phases is important)

 Unresolved bubble collapse in the heterogeneous model
 Bubble collapse is a singularity causing strong shock waves

e Other mechanisms?
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Multiscale approach to bubble collapse

* Bubble collapse (singularity) is difficult to
resolve in global 3D model.

Multiscale approach:

Step 1: Accurate local model precomputes the
collapse pressure

Step 2: Output of the local model
serves as input to the global model
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Step 1: 1D bubble collapse

radius (cm)

Radius vs. Time Pressure Profile at t =0.0035 ms
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Step 2: 2D and 3D simulations of the collapse induced spike

QuickTime™ and a QuickTime™ and a QuickTime™ and a
TIFF (LZW) decompressor TIFF (LZW) decompressor TIFF (LZW) decompressor
are needed to see this picture. are needed to see this picture. are needed to see this picture.
t=0 t =0.0035 ms t=0.0070 ms

* Bubble collapse near the jet surface causes surface instability
* The growth of the spike is not stabilized by the magnetic field
 This is unlikely to be the only mechanism for surface instabilities
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Initial instability (turbulence) of the jet

QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.

This was the real state of the jet This was Initial jet in previous
before the interaction with protons numerical simulations (in 2D and 3D)

The obvious difference might be an important missing factor for both
the jet flattening effect and interaction with the proton pulse.
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3D jet naturally growing from the nozzle

* Major numerical development allowed
us to obtain the state of the target
before the interaction by “first principles”

o Simulation of the jet - proton pulse
Interaction Is in progress
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Mercury jet before the interaction with proton pulse.
No magnetic field
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