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Talk Outline

ν Numerical methods. FronTier code and its typical applications.

ν Distortion of the mercury jet entering magnetic field

ν Simulation of the mercury jet – proton pulse interaction.

ν Conclusions and future plans
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Target simulation requires multiphase / free surface MHD

Solving MHD equations (a coupled hyperbolic – elliptic system) in 
geometrically complex, evolving domains subject to interface boundary 
conditions (which may include phase transition equations) 

Material interfaces:
• Discontinuity of density and 
physics properties (electrical 
conductivity)
• Governed by the Riemann 
problem for MHD equations or 
phase transition equations

Target schematic
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MHD  equations and approximations

Full system of MHD equations Low magnetic Re approximation
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Front Tracking: A hybrid of Eulerian and Lagrangian methods

Advantages of explicit interface tracking:
• No numerical interfacial diffusion
• Real physics models for interface propagation
• Different physics / numerical approximations 

in domains separated by interfaces

Two separate grids to describe the solution:
1. A volume filling rectangular mesh
2. An unstructured codimension-1 

Lagrangian mesh to represent interface

Main Ideas of Front Tracking

Major components:
1. Front propagation and redistribution
2. Wave (smooth region) solution
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FronTier-MHD numerical scheme

Elliptic step
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• Propagate interface
• Untangle interface
• Update interface 
states

• Apply hyperbolic 
solvers
• Update interior 
hydro states

• Generate finite element grid
• Perform mixed finite element discretization
or
• Perform finite volume discretization
• Solve linear system using fast Poisson solvers

• Calculate 
electromagnetic 
fields 
• Update front and 
interior states

Point Shift (top) or Embedded Boundary (bottom) 
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FronTier is a parallel 3D multiphysics code based on front tracking
ν Physics models include 

ν Compressible fluid dynamics
ν MHD
ν Flow in porous media
ν Elasto-plastic deformations

ν Realistic EOS models, phase transition models
ν Exact and approximate Riemann solvers
ν Adaptive mesh refinement

The FronTier Code (SciDAC ITAPS Software)

Turbulent fluid mixing.
Left: 2D
Right: 3D (fragment of 
the interface)
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Rayleigh-Taylor 
instability

Liquid jet breakup 
and atomization

Main FronTier Applications

Richtmyer-Meshkov 
instability
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• ITER is a joint international research and 
development project that aims to 
demonstrate the scientific and technical 
feasibility of fusion power

• ITER will be constructed in Europe, at 
Cadarache in the South of France in ~10 
years

Fusion Energy. ITER project: fuel pellet ablation

Models and simulations of tokamak 
fueling through the ablation of frozen 
D2 pellets
Collaboration with General Atomics

Our contribution to ITER science:

Laser driven pellet acceleration
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New Ideas in Nuclear Fusion: Magnetized Target Fusion (MTF)

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.
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Jet entering 15 T solenoid

FronTier code:

• Explicitly tracked material interfaces
• Multiphase models
• MHD in low magnetic Reynolds 
number approximation



Brookhaven Science Associates
U.S. Department of Energy 13

Previous Results (2005) 
Aspect ratio of the jet cross-section. I

B = 15 T
V0 = 25 m/s
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0.10α =
B = 15 T
V0 = 25 m/s

Previous Results (2005) 
Aspect ratio of the jet cross-section. II

0.10 rad, z = 0:
Aspect ratio = 1.4
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100 mrad tilt angle

z = 0 cm z = 20 cm

z = 40 cm z = 50 cm

z = 30 cm

z = 60 cm

Aspect ratio = 1.4 in the solenoid center

Confirmation:  Independent studies by Neil Morley, UCLA, 
HiMAG code
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R. Samulyak et. al, Journal of Computational Physics, 226 (2007), 
1532 - 1549. 

Comparison with the theory
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• Confirmed

MERIT setup 
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V = 15 m/s,  B = 15 T

Jet trajectory Bz

By Jet distortion
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V = 20 m/s,  B = 15 T

Jet distortion

Jet trajectory Bz

By
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Comparison: V = 15 and 20 m/s,  B = 10 and 15 T

Jet distortion vp1       vp2      vp3
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Simulations only qualitatively explain the width of the jet in different view ports. 

Experimental data 

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

V = 15 m/s,  B = 10T V = 20 m/s,  B = 10T 

B = 15T B = 15T 
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Jet - proton pulse interaction. Evolution of models.
Phase I: Single phase mercury (no cavitation)

ν Strong surface instabilities and jet breakup observed in simulations

ν Mercury is able to sustain very large tension
ν Jet oscillates after the interaction and develops instabilities

Jet surface instabilities
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• We evaluated and compared homogeneous and 
heterogeneous cavitation models:

Homogeneous model

Heterogeneous model
(resolved cavitation 
bubbles) 

• Two models agree reasonably well
• Predict correct jet expansion velocity
• Surface instabilities and jet breakup
not present in in simulations
• Delay and reduction of jet disruptions 
by the magnetic field

Jet - proton pulse interaction.
Phase II: Cavitation models
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Jet - proton pulse interaction 
Phase III: Search of missing physics phenomena

Surface instabilities and jet breakup were not observed 
in simulations with cavitation.

Possible Cause:

• Turbulence nature of the jet

• Microscopic mixture and strong sound speed reduction of the 
homogeneous model (separation of phases is important)

• 2D vs 3D physics

• Unresolved bubble collapse in the heterogeneous model
• Bubble collapse is a singularity causing strong shock waves

• Other mechanisms?



Brookhaven Science Associates
U.S. Department of Energy 25

• Bubble collapse (singularity) is difficult to 
resolve in global 3D model. 

Multiscale approach to bubble collapse 

Multiscale approach:

Step 1: Accurate local model precomputes the 
collapse pressure

Step 2: Output of the local model
serves as input to the global model
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Step 1: 1D bubble collapse 

Radius vs. Time Pressure Profile at  t =0.0035 ms
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• Bubble collapse near the jet surface causes surface instability
• The growth of the spike is not stabilized by the magnetic field
• This is unlikely to be the only mechanism for surface instabilities

Step 2: 2D and 3D simulations of the collapse induced spike 

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

t = 0 t = 0.0035 ms t = 0.0070 ms
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This was the real state of the jet 
before the interaction with protons

Initial instability (turbulence) of the jet 

This was initial jet in previous 
numerical simulations (in 2D and 3D)

The obvious difference might be an important missing factor for both 
the jet flattening effect and interaction with the proton pulse.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.
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• Major numerical development allowed 
us to obtain the state of the target 
before the interaction by “first principles”

• Simulation of the jet - proton pulse 
interaction is in progress

Cavitation and instabilities of 3D jet emerging from the nozzle 
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3D (fuel) jet breakup and atomization 

Left: FronTier simulations

Right: ANL experiment
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3D jet cavitation

QuickTime™ and a
Cinepak decompressor

are needed to see this picture.

QuickTime™ and a
Cinepak decompressor

are needed to see this picture.
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QuickTime™ and a
BMP decompressor

are needed to see this picture.
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14.8  31.4    45.4 microseconds
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14.8  31.4    45.4 microseconds
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