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4 MW Proton Drivers - Realistic ? pid4

® An order of magnitude hig

® Are su

b-systems capable

such power?

* While the target may represent a tiny portion of the

overall infrastructure, its role in the functionality of the
system IS paramount

® Since no one-size-fits all works, the target choice must
satisfy accelerator parameters that are set by physics

® Unfortunately, it Is a two-way negotiation !!!!
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Parameter Space

A happy medium between physics goals and engineering reality

Protons per pulse required for 4 MW

P..(w)=E[eV]xNxexf [HZ]

rep

10 Hz 25 Hz S0 Hz
10 GeV 250 = 1012 100 = 1012 |50 = 1012
20 GeV 125 1012 |50 = 1012 |25 = 1012
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Neutrino factory

8.0 GeV < Energy < 20.0 GeV

Rep Rate ~ 50(25) Hz

Intensity 50*10**(12) ppp, at 10(20) GeV

Bunch Length < 3 ns, for longitudinal acceptance

Proton Driver MAY NOT be dedicated to Neutrino Factory and must have the
potential of serving other experiments =» compromise
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The functionality of any scheme i1s most definit
controlled by our target choice
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How Can We Get There? Tr}‘!

® Liguid or So
® Stationary o
® Something |

107
" Moving?

N between (i.e. packed particle beds) ?

Common denominator: always going through window or
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Pulse Structure

Bunch length effect on target response
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Why is Pulse Structure Important? ~ w
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What R&D is a MUST In addressing the desired
or optimized parameter space?
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Solid Target Considerations TE\((

on co®

® Low, mid- or high Z? (we have been looking into all
of them)

® Stationary or moving?

® Primary concerns:
 Absorption of beam-induced shock

 premature failure due to fatigue (RAL thermal shock
studies and their central role)

e radiation damage from long exposure

- ) Office of BROOKHELAEN
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Putting a real face to radiation damage !!
Proton and neutron exposure of fused silica (LHC O0-degree Calorimeter)

lonization chamber
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Fused silica damage visualization

Transmittance vs radiation absorbed dose

Light:
Violet (405nmy)
Blue(470nm)
Red(630nm)
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Solid Target Option T!?\('

c‘)

® Anticipated cocktail far exceeds what current facilities can
provide

* While past experience (material behavior from reactor operation;

experimental studies) can provide guidance, extrapolation to
conditions associated with multi-MW class accelerators is risky

* inch ever closer to the desired conditions by dealing with issues
individually

® Embark on a comprehensive R&D in hope to:
* deal with the implications of high power

* identify promising candidates ==> target schemes
e identify limits
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Solid Targets — How far we think they can go? m((
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1MW ? 4 MW 7?

Answer dependant on 2 key parameters:
Answer is YES for several materials | 1—rep rate
2 - beam size compliant with the physics sought

Irradiation damage is of primary

concern Al: for rep-rate > 50 Hz + spot > 2mm RMS =>»
4 MW possible (see note below)

Material irradiation R&D pushing
ever closer to anticipated atomic A2: for rep-rate < 50 Hz + spot < 2mm RMS

displacements while considering => Not feasible (ONLY moving targets)
new alloys is needed

NOTE: While thermo-mechanical shock may be

manageable, removing heat from target at 4 MW
might prove to be the challenge.

CAN only be validated with experiments

0(0),SfMice of BROOKHEAEN
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Y ?%z
Overview of R&D Realized to-date on Solid Targets 4}‘3\((

® Target Shock Studies (BNL-E951)

® Radiation damage Studies (BNL)
® Target Lifetime Studies (RAL)

7 j3 ommca or BROOKHEAVEN

4 Science NATIONAL LABORATORY
PARTMENT OF ENERGY 15 BROOKHAVEN SCIENCE ASSOCIATES



(N0 Fg
Q‘:\}\ C,bf

Target Shock Studies

S
(’On Co\\\ée,

— ATJ1 G3 r

Measured strains

micro-strain
w
o

beam arrival

1] 100 200 300 400 500 600 Too gon
micro-secs

6.4 Predicted Strain

microstrain

Fiberoptic®strain gauges

-1.6 T T T T T T T T T T T T ]
1] 80 160 240 320 400 480

microsecs

24 GeV
proton heam

Pz Office of BROOKHFEAEN
‘4 Science NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY 1 6 BROOKHAVEN SCIENCE ASSOCIATES



Beam-induced shock on thin targets

fiberoptic strain gauges
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Solid Target Shock Studies — Assessment Overview

® Delineated between Graphite and Carbon composites
® Some super-alloys (titanium, inconel) exhibit favorable

® Materials “appear’” more shock resilient than conventional estimates

® Simulation-based predictions based proved that computational tools can help
push the envelope to higher power

® BUT, computational tools need scrutiny at even more severe conditions

Tracking code prediction on energy deposition (GEANT, MARS) were confirmed

VA Office of BROOKHEAEN
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Target Radiation Damage R&D

BEAM on Targets

Target Station
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Irradiation Damage Analysis

Thermal Expansion/Heat
Capacity Measuring System

Remotely operated mechanical
testing system
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Target Irradiation Damage R&D in a Nutshell

* PHASE I: Super-Invar & Inconel-718

* PHASEII:

o 3D-weaved Carbon-Carbon
Toyota “Gum Metal”
Graphite (IG-43)

AlBeMet

Beryllium

Ti Alloy (6Al-4V)

Vascomax

Nickel-Plated Aluminum

* PHASE ll-a: 2D-weaved CC composite

Office of
4 Science

U.S. DEPARTMENT OF ENERGY

PHASE III:

3-D and 2-D weaved Carbon-Carbon Composites
Toyota “Gum Metal” (90% cold-worked)
Graphite (IG-43 and isotropic 1G-430)

Ti Alloy (6AI-4V)

Copper (annealed)

Glidcop_15AL - Cu alloyed with .15% Al

Bonded graphite to Titanium and Copper
Tungsten and Tantal
Re-irradiation of suger-Invar

AlBemet and VasgOmax

Nickel-Plated Alyminum of the NuMI horn
Fused Silica (
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Superbeam Target Concept

BEAM

wesy uojoid

COOLING WATER
COLLECTION

CC TARGET

CARBON-CARBON

BLOCK
He TARGET COOLANT
ANNULUS
—=

HELIUM IN
CARBON-CARBON
TARGET ROD
Baffle Cooling Loops
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Coefficient of Thermal Expansion(10°/C)

Thermal Expansion (Inicrons)
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Radiation Damage in Carbon-Carbon Composites
The GOOD News

CCX CTE at 250°C
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Radiation Damage in Carbon-Carbon Composites and Graphite
The BAD News

PD CC: weal: direction
. Vo D CC

LY
L]
Beam Spot

[fluence ~10"21 p/cm2]
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Irradiation effect on magnetic horn

(Ni-plated aluminum)

A low-Z material such as AlBemet (need
low-Z but with good strength to not
Impede the flight of pions produced in
the target) that has exhibited (thus far)
excellent resistance to corrosion while
maintaining strength and ductility under
irradiation could be the magnetic horn
material

Before irradiation

-l e A B s -
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Radiation Damage - mid-Z Target Options

“annealing” of super-Invar

Following 1st irradiation
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ONGOING 3rd irradiation phase: neutron exposure
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Radiation Damage of Super Alloy “Gum” metal
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As observed in other studies (AlMg-alloy)

0.2 dpa was enough to remove cold-work microstructure
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Radiation Damage Studies — Super-alloys with encouraging results
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Radiation Damage Studies — High-Z Materials
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Tungsten
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Neutron Irradiation Studies using the BNL Accelerator Complex and its potential benefits

Target Lay-out

Box 1
é (stopping all incoming

112 Meb protons)

Protons

Box-2 - Position 1
(target assembly)

Box 2 - Position 2
Box 2 - Position 3

BOX 2: showered with neutrons

D.062ZE" water gap
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4 Science

U.S. DEPARTMENT OF ENERGY

31

NATIONAL LABORATORY
BROOKHAVEN SCIENCE ASSOCIATES



Whether Hg Jet or Solid, it 1s the
functionality/survivability of the overall
target infrastructure that i1s important

' Office of BROOKHFEAEN
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(After B. Rlemer, et al)

Target Container

: Key SNS P. t
Cooling Channels =1 arameters

+ 1 GeV protons

- 2 MW average beam power
« Pulse duration ~ 0.7 us

+ 60 Hzrep rate

Stainless Steel
Target Container
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We need to venture outside the safety
envelope to identify the limits

Simulations around MERIT for example
can allow the study of beam structure/jet
velocity/jet destruction etc.
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__J Science NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY 34 BROOKHAVEN SCIENCE ASSOCIATES



Hg Explosion Simulations
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Hg explosions and Target Infrastructure

74 Office of BROOKHEAEN
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Time = 0

Time = 0
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SUMMARY

® Keep inching closer to the baseline conditions of a multi-MW

class accelerator by solving pieces of the puzzle individually
and with proof-of-principle experiments

— We do not have or can have all the conditions in a single setting because
these accelerators have not materialized as of yet

* Focus on irradiation damage and thermal shock/fatigue of
Key components that could be the limiting factors in the
Ifetime of the overall experiments

® Appreciate the value of multi-physics based simulations for the

engineering side of things (where actual limitations lie) and
use them to push the envelope
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