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High Power Target Material R&D
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1 MW?

Answer 1s YES for several
materials

Irradiation damage is of primary
concern

Material irradiation R&D pushing
ever closer to anticipated atomic
displacements while considering
new alloys are needed

4 MW ?
Answer dependant on 2 key parameters:
1 —rep rate

2 - beam size compliant with the physics sought

Al: for rep-rate > 50 Hz + spot > 2mm RMS
=>» 4 MW possible (see note below)

A2: for rep-rate < 50 Hz + spot < 2mm RMS
=>» Not feasible (ONLY moving targets)

NOTE: While thermo-mechanical shock may be
manageable, removing heat from target at 4 MW
might prove to be the challenge.

CAN only be validated with experiments

NFMCC Meeting, UCLA, CA
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R&D on 1rradiation damage

What does it mean for materials (microscopic & macroscopic terms) ?
generation of voids/dislocations = changes in physical and mechanical properties
trapping of gases, swelling =>» density reduction

Effects of neutron irradiation from reactor experience

Question: does radiation type matter?

NFMCC Meeting, UCLA, CA
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Ut111z1ng BNL Accelerator Complex P cot®

to AGS BOOSTER —/, "’/ BLIP
fil{ /./{,« Target Station

Irradiation takes
place at BLIP
using 200 MeV or
117 MeV protons at
the end of Linac

~ BEAM onr Targets

Proton Energy (MeV) 66-200
Pulse Current 37 mA
Pulse Rate 7.5 Hz
Pulse Width 525 us
Maximum Current 146 pA
Typical Current 80 pA

Beam Lines 1

Post irradiation analysis at
BNL Hot Labs

Remotely operated mechanical
testing svstem

Thermal Ex ) ansmn/Heat
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Mot it IRRADIATION STUDIES

PHASE I: CAING

Super Invar and Inconel-718

PHASE 1I:

* 3D Carbon-Carbon Composite
* Toyota “Gum Metal”

* Graphite (IG-43)

* AlBeMet

* Beryllium

* Ti Alloy (6Al-4V)

* Vascomax

* Nickel-Plated Alum.

PHASE I1-a:
2D Carbon-Carbon

Beam footprint on targéts (1G)

PHASE III:
* 3D & 2D Carbon-Carbon
* 90% cold-worked “Gum Metal” 755 (o1 aphito
* Graphite (IG-43 & 1G-430) = Mo
* AlBeMet e Gum Meta] m m—
* Ti Alloy (6Al-4V) :
* Copper & Glidcop o :z . X - Profile “ g Y- Profile I E_l—ll
* Wand Ta e f/ \\{ s 2 [ 7 R A
* Vascomax |- i e— fT A e e e——
* Nickel-Plated Aluminum ot \M : -,/ \\“ = -
* Super-Invar = following annealing T R T
« Graphite/titanium bonded target Cooling Water Channels Sl .
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Specially bonded graphite/titanium target exposed to proton irradiation
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—— ATJ Graphite
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Thermal conductivity of neutron-irradiated graphites.
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Expansion dL(um)

Radiation changes material

14 4 dramatically
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45-degree plane (“weak’ orientation)

Good news were associated with modest beam exposure (~ 25,000 uA-hrs). More
needed to be done to validate that carbon composites can replace graphite.
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Embarked into a 2-phase new study

Phase 1 =» Assess the 2D carbon-carbon under heavy
irradiation

Phase 2 =» Expose 2D & 3D carbon-carbon composites
under 1dentical experimental conditions

NFMCC Meeting, UCLA, CA



PEAK integrated flux achieved ~ 7 x 10*21 protons/cm”2
Integrated beam current ~ 108,000 uA-hrs

Post-irradiation analysis of the exposed 2-D carbon composite revealed both good and bad
News:

GOOD NEWS: the composite exhibits self-healing behavior
(as in the case of the 3-D counterpart)

BAD NEWS: Serious structural degradation is observed as a result of high fluences
Damage more pronounced along the “weak” orientation

NFMCC Meeting, UCLA, CA



2D carbon composite exhibits self-healing through

thermal annealing

Self-Annealing of 2D Carbon-Carbon (fiber plane)
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Thermal Expansion (microns)

Thermal Expansion (microns)
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Structural degradation

“strong’” orientation

“weak” orientation

1D C-C (LHC)
Lradiation Assembly =

-C (LHC) |

2D C-C: Strong Orientation

\§ N\
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“Unexpected” 2-D CC damage left us scratching
our heads

Is it just the 2D carbon composite that is susceptible to high fluences
OR
This holds true will ALL carbon composites (2D & 3D) ?

The mixed-bag of news prompted us to go through another
exposure where 2D and 3D carbon composites are irradiated
under identical conditions

Irradiation of the two carbon composites along with two graphite grades
(IG-43 and 1G-430) was performed 1n Spring 2006. Integrated current
reached ~ 50,000 uA-hrs (but likely under tighter beam spot!!)

NFMCC Meeting, UCLA, CA



2005 Irradiation 2006 Irradiation

»
108 000 nA-hrs

heam spot

Nickel foils of the 2006 irradiation are currently being analyzed (radiography)
to establish shape of proton beam

NFMCC Meeting, UCLA, CA



3D CC Layer #1

3D C-C Laver #1

3D CC (CTE3 S —
3D CC (tensile

7 2 813D CC Layer #2

3D C-C Laver 72
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— oL S
D CC: weak direction

D CC

Strong Direction
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BACK TO THE DRAWING BOARD
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Take another look at super-Invar
Look into other Super-alloys (gum metal, titanium alloys, etc.)
Explore new graphite grades
Further evaluate AlBeMet
Re-assess high-Z range (Ta, W)

NFMCC Meeting, UCLA, CA
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Remote RE-ASSEMBLY in Hot Cell
Half of layer undergone annealing (>600 C)




Thermal Expansion (microns)

Irradiation Damage & Annealing of Super-INVAR
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Thermal Expansion (microns)

Irradiation Damage & Annealing of Super-INVAR
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* How i1s irradiation damage influenced by high temperatures during
irradiation and if yes where 1s the threshold?

— A difficult but not impossible task — achieve same exposure at different irradiation
temperatures

— Identifying the temperature threshold will allow for life extension of the material in
the irradiation environment

* Do materials exhibit similar damage following annealing and re-
irradiation ?

— Studies from neutron exposure indicate that the number of voids, while decrease in
size, increase in number during re-irradiation

— To address that, irradiated and then annealed super-Invar has been exposed to
irradiation

NFMCC Meeting, UCLA, CA
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Radiation effect on ductility & strength — How important 1s ductility?
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Serious degradation of magnetic horn material

(nickel-plated aluminum) used in the NuMI experiment at FNAL!
Retested during Phase 111 with double the exposure and waiting examination
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The value of performing R&D prior to moving too far ahead based
on “expectations’” has been clearly demonstrated

Further experimental scrutiny of 2D or 3D carbon composites for
irradiation damage effects 1s not recommended. These composites
clearly CANNOT tolerate the high fluences required by high-
power beam targets. These results should prompt a change of
course 1n the search for materials for the multi-MW beam targets.

FOCUS needs to be shifted toward:

— Low-Z: new graphite grades such as isotropic graphite IG-430 and
AlBeMet

— Mid-Z: Titanium alloys, Vascomax, super-Invar
— High-Z: New alloys of Ta and W

NFMCC Meeting, UCLA, CA
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Some interesting irradiation damage findings !!!
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Capacitors

Ceramic
TYPE A

Four 1-mm rods and
three 2-mm rods

Aluminum container
D~(17+1) mm

Copper foil container
D~5 mm

Aluminum holder
D~72 mm

Ceramic
TYPE B
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Container 1

Container 2

Beam

Container 3
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Each wall consists of:
0.010" 88 + 0.120" Al

=

112 MeV
Protons

0.03" 88
window

Neutron Exposure

Vacuum

0.012" Inconel

0.012 Nb

=

Water (all gaps = 2mm)

PROTONS EXPECTED TO STOP
WITHIN GALLIUM TARGET

CERAMIC
SOmm x I5mm x 1. 5mm

capacitors /\ resistors
RN 7

' / ]

i\

L '\Il1 1§
[ T ]
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