MATERIAL R&D FOR HIGH-INTENSITY PROTON BEAM TARGETS

Nicholas Simos, BNL

January 4, 2005

GOAL

SEARCH for and evaluate under irradiation environment NEW materials or composites that appear to hold the answer the problem of survivability as high power targets by exhibiting unusually high strength, very low thermal expansion or high ductility

Experimentation with Graphite & Carbon-Carbon Targets (BNL E951)

Graphite vs. Carbon-Carbon – A Clear Choice really?

Irradiation of Super Invar Alloy at BNL to Assess Coefficient of Thermal Expansion and Mechanical Properties

NuFact2004, Osaka, Japan

Solid Target Option: Super-Invar Irradiation Study

Super-Invar Irradiation Study – Temperature Effects

PHASE II -TARGET MATERIAL R&D

- Carbon-Carbon Composite (BNL)
- Toyota "Gum Metal" (KEK)
- Graphite (IG-43) (KEK)
- AlBeMet (BNL)
- Beryllium (BNL)
- Ti Alloy (6Al-4V) (SLAC)
- Vascomax (BNL)
- Nickel-Plated Aluminum Used in the NUMI Horn

(BNL-FNAL-KEK)

WHAT IS OF INTEREST TO US IN POST-IRRADIATION PHASE

Resilience in terms of strength/shock absorption

- **CTE evaluation**
- Stress-strain
- Fatigue
- Fracture Toughness and crack development/propagation

•Corrosion Resistance

•De-lamination (if a composite such as CC or plated HORN conductor) – Use of ultrasonic technology to assess changes

•Degradation of conductivity

Other tests are also in the planning for scrutiny of the successful candidates (laser induced shock and property measurements)

Carbon-Carbon Composite Target

Temp.	% elongation
23 ° C	0%
200 ° C	-0.023%
400° C	-0.028%
600° C	-0.020%
800° C	0%
1000° C	0.040%
1200° C	0.084%
1600° C	0.190%
2000° C	0.310%
2300° C	0.405%

The Wonders of Gum Metal (soon in peppermint flavor !!)

AlBeMet[®] Property Comparison

Property	Beryllium S200F/AMS7906	AlBeMet AM16H/AMS7911	E-Material E-60	Magnesium AZ80A T6	Aluminum 6061 T6	Stainless Steel 304	Copper H04	Titanium Grade 4
Density Ibs/cuin (g/cc)	0.067 (1.86)	0.076 (2.10)	0.091 (2.51)	0.065 (1.80)	0.098 (2.70)	0.29 (8.0)	0.32 (8.9)	0.163 (4.6)
Modulus MSI (Gpa)	44 (303)	28 (193)	48 (331)	6.5 (45)	10 (69)	30 (205)	16.7 (115)	15.2 (105)
UTS KSI (Gpa)	47 (324)	38 (262)	39.3 (273)	49 (340)	46 (310)	75 (515)	46 (310)	95.7 (660)
YS KSI (Gpa)	35 (241)	28 (193)	N/A	36 (250)	40 (276)	30 (205)	40 (276)	85.6 (590)
Elongation %	2	2	< .05	6	12	40	20	20
Fatigue Strength KSI (Gpa)	37.9 (261)	14 (97)	N/A	14.5 (100)	14 (96)	N/A	N/A	N/A
Thermal Conductivity btu/hr/ft/F (W/m-K)	125 (216)	121 (210)	121 (210)	44 (76)	104 (180)	9.4 (16)	226 (391)	9.75 (16.9)
Heat Capacity btu/lb-F (J/g-C)	.46 (1.96)	.373 (1.66)	.310 (1.26)	.261 (1.06)	.214 (.896)	.12 (.6)	.092 (.386)	.129 (.64)
CTE ppm/F (ppm/C)	6.3 (11.3)	7.7 (13.9)	3.4 (6.1)	14.4 (26)	13 (24)	9.6 (17.3)	9.4 (17)	4.8 (8.6)
Electrical Resistivity ohm-cm	4.2 E-06	3.5 E-06	N/A	14.6 E-06	4 E-06	72 E-06	1.71 E-06	60 E-06

TECHNICAL DATA SHEET

VASCOMAX[®] C-200/C-250/C-300/C-350

Nominal Mechanical Properties of Small Diameter Bars Following Aging Heat Treatment Figure 1

	VascoMax C-200	VascoMax C-250	VascoMax C-300	VascoMax C-350
Ultimate Tensile Strength, psi	210,000	260,000	294,000	350,000
0.2% Yield, psi	206,000	255,000	290,000	340,000
Elongation, %	12	П	П	7
Reduction of Area, %	62	58	57	35
Notch Tensile (K _t = 9.0), psi	325,000	380,000	420,000	330,000
Charpy V-Notch, ft-lb	36	20	17	10
Fatigue Endurance Limit (10º Cycles), psi	110,000	110,000	125,000	110,000
Rockwell "C" Hardness	43/48	48/52	50/55	55/60
Compressive Yield Strength, psi	213,000	280,000	317,000	388,000

VASCOMAX® C-200

EGITIN GALE BATTAL STIEL

All specimens solution annealed for one hour at 1500° F. air cooled and aged at 900° F for the times indicated.

TECHNICAL DATA SHEE

VASCOMAX® C-200

Physical Properties

Average Coefficient of Thermal Expansion (70-900° F)	5.6 × 10 ⁻⁶ in/in/°F
Modulus of Elasticity	26.2 × 10 ⁶ psi
Density	.289 lbs/cu. in. (8.0 g/cc)
Thermal Conductivity at 68° F	11.3 BTU/(ft)(hr)(°F)
at 122° F	11.6 BTU/(ft)(hr)(°F)
at 212° F	12.1 BTU/(ft)(hr)(°F)

Nominal Annealed Properties

Hardness	30 Rc
Yield Strength	100 ksi
Ultimate Strength	140 ksi
Elongation	18%
Reduction of Area	72%

Nominal Room Temperature Properties after Aging

Size	Direction	Hardness Rockwell "C"	Tensile Strength ksi	0.2% Yield Strength ksi	Elongation In 45 VA %	Reduction of Area %
5/8" Round	Longitudinal	43.4	212.0	207.7	12.5	61.7
11/4" Round	Longitudinal	43.0	214.3	208.5	12.0	60.6
3" Round	Longitudinal	42.8	210.0	204.2	11.9	60.4
	Longitudinal	43.5	208.4	202.6	11.6	58.8
6' Square	Transverse	43.9	206.9	200.1	8.9	41.7
.250" Sheet	Transverse	42.9	218.1	213.0	11.0	45.0

Mechanical Properties	Titanium Ti-6Al-4V (Grade 5), Annealed			
Hardness, Brinell	334	334	Estimated from Rockwell C.	
Hardness, Knoop	363	363	Estimated from Rockwell C.	
Hardness, Rockwell C	36	36		
Hardness, Vickers	349	349	Estimated from Rockwell C.	
Tensile Strength, Ultimate	<u>950 MPa</u>	138000 psi		
Tensile Strength, Yield	<u>880 MPa</u>	128000 psi		
Elongation at Break	14 %	14 %		
Reduction of Area	36 %	36 %		
Modulus of Elasticity	<u>113.8 GPa</u>	16500 ksi		
Compressive Yield Strength	<u>970 MPa</u>	141000 psi		
Notched Tensile Strength	<u>1450 MPa</u>	210000 psi	K_t (stress concentration factor) = 6.7	
Ultimate Bearing Strength	<u>1860 MPa</u>	270000 psi	e/D = 2	
Bearing Yield Strength	<u>1480 MPa</u>	215000 psi	e/D = 2	
Poisson's Ratio	0.342	0.342		
Charpy Impact	<u>17 J</u>	12.5 ft-Ib	V-notch	
Fatigue Strength	<u>240 MPa</u>	34800 psi	at 1E+7 cycles. K_t (stress concentration factor) = 3.3	
Fatigue Strength	<u>510 MPa</u>	74000 psi	Unnotched 10,000,000 Cycles	
Fracture Toughness	<u>75 MPa-m¼</u>	68.3 ksi-in%		
Shear Modulus	<u>44 GPa</u>	6380 ksi		
Shear Strength	<u>550 MPa</u>	79800 psi	Ultimate shear strength	

Titanium Ti-6Al-4V (Grade 5), Annealed

Electrical Properties

Electrical Resistivity	<u>0.000178 ohm-cm</u>	0.000178 ohm-cm	
Magnetic Permeability	1.00005	1.00005	at 1.6kA/m
Magnetic Susceptibility	3.3e-006	3.3e-006	cgs/g
Thermal Properties			
CTE, linear 20°C	<u>8.6 µm/m-°C</u>	4.78 µin/in-°F	20-1001C
CTE, linear 250°C	<u>9.2 µm/m-*C</u>	5.11 µin/in-°F	Average over the range 20-315IC
CTE, linear 500°C	<u>9.7 µm/m-°C</u>	5.39 µin/in-°F	Average over the range 20-6501C
Heat Capacity	<u>0.5263 J/q-*C</u>	0.126 BTU/lb-*F	
Thermal Conductivity	<u>6.7 W/m-K</u>	46.5 BTU-in/hr-ft²-°F	
Melting Point	1604 - 1660 °C	2920 - 3020 °F	
Solidus	<u>1604 °C</u>	2920 °F	
Liquidus	<u>1660 °C</u>	3020 °F	
Beta Transus	<u>980 °C</u>	1800 °F	

Tensile and CTE Specimen Design

Tensile and CTE Specimen Assembly into the Target Box During Irradiation

TARGET BOX ASSEMBLY DETAILS

Estimation of Irradiation Temperature Using Aluminum Plate into the BLIP Irradiation Facility and Temperature Sensitive

Paint (TSP)

Experiment

Activation & Beam profile Assessment

HOT CELL Specimen Analysis

Dilatometer

Remotely operated Tensile Tester

Preliminary Results from Testing Irradiated Specimens at the BNL Hot Cell Facility

- NOTE that just a few of the tested specimens of each material is presented in the following graphs. While most of the irradiated samples have been tested, no correlation with the specimen activation has been made. Further, the non-irradiated specimen testing is incomplete (this will provide a better estimate of what the non-irradiated stress values, such as yield and ultimate, were prior to irradiation)
- The Stress-Strain Curves generated are from RAW data with no adjustment for "effective" strain gauge (results shown assume that only the 6mm neck-down section of the specimen contributes to the total extension of the specimen)
- Given that the position of the proton beam spot was slightly off centered, a second level of correlation will be performed based on the location within the 6mm gauge (neck-down) where rupture occurred.

Titanium (Ti6Al4V) Stress Data

VascoMax Irradiated and Non-irradiated Specimen Sress-Strain Curve

Beryllium Data

AlBeMet Stress-Strain Relation

Gum Metal Stress-Strain Curve

Effects of Irradiation on GUM metal Stress-Strain

