

High Power Target R&D Simulations

N. Simos Brookhaven National Lab

May 1-2, Oxford U., UK

Exploring Eulerian-Lagrangian Formulation Capabilities of LS-DYNA Proton Beam - Hg Jet Interaction Experiment

High velocity projectiles emanating from Hg target

200 µm

Molten Lead – Tantalum Vessel Target

17549

Relevance to Hg Jet: Jet nozzle survivability

Hg Explosion Simulations

Hg explosions and Target Infrastructure

Superbeam Target Concept

Overview of R&D Realized to-date on Solid Targets

Target Shock Studies

Radiation damage Studies

Solid Targets

ORY

Target Shock Studies

Beam-induced shock on thin targets

12

U.S. DEPARTMENT OF ENERGY

BROOKHAVEN SCIENCE ASSOCIATES

Pulse Structure

trino Facto,

Solid Target Shock Studies

- Graphite and Carbon composites
- super-alloys
- Materials "appear" more shock resilient than conventional estimates

Thermal Conductivity

3-D CC (~ 0.2 dpa) conductivity reduces by a factor of 3.2

2-D CC (~0.2 dpa) measured under irradiated conditions (to be compared with company data)

Graphite (~0.2 dpa) conductivity reduces by a factor of 6

W (1+ dpa)	→	reduced by factor of ~4
Ta (1+ dpa)	→	~ 40% reduction
Ti-6Al-4V (~ 1dpa)	→	~ 10% reduction

Radiation Damage in Carbon-Carbon Composites

Science

U.S. DEPARTMENT OF ENERGY

0 mCi

Temperature (C)

150 200

Temperature (C)

0 mCi

4.6 mCi

8.1 mCi

300 350

250

300 350

Radiation Damage in Carbon-Carbon Composites and Graphite

[fluence ~10^21 p/cm2]

"annealing" of super-Invar

ONGOING 3rd irradiation phase: neutron exposure

Radiation Damage of Super Alloy "Gum" metal

As observed in other studies (AIMg-alloy)

0.2 dpa was enough to remove cold-work microstructure

20

Radiation Damage Studies – High-Z Materials

Tantalum

Tantalum

22

Tungsten

Tungsten

NEXT STEP ?

- Focus on irradiation damage and thermal shock/fatigue of key components that could be the limiting factors in the lifetime of the overall experiments
- Appreciate the value of multi-physics based simulations for the engineering side of things (where actual limitations lie) and use them to push the envelope

